This study aims to show the aptitude of a locally made composite for providing thermal comfort and mechanical resistance in buildings in hot-dry climates.The thermal characterization reveals that the thermal diffusivi...This study aims to show the aptitude of a locally made composite for providing thermal comfort and mechanical resistance in buildings in hot-dry climates.The thermal characterization reveals that the thermal diffusivity of the studied material is lower than that of commonly used materials such as agglomerated and full cinderblocks and laterite blocks and therefore is a better insulating material.In addition,its thermal inertia is the highest compared to commonly used materials of agglomerated and full cinderblocks,laterite blocks and compressed earth blocks,which implies a longer time lag.On the basis of mechanical resistance,with a compression resistance of 3.61 MPa,the studied material meets the requirement of CRATerre and NBF 02-003(2009)as a material for construction of single-storey buildings.Therefore,this material,containing 1%Hibiscus sabdariffa fibers and compacted by vibration,is a suitable material for the walls of standing buildings and for thermal comfort in hot dry climates.展开更多
Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polyc...Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials.展开更多
文摘This study aims to show the aptitude of a locally made composite for providing thermal comfort and mechanical resistance in buildings in hot-dry climates.The thermal characterization reveals that the thermal diffusivity of the studied material is lower than that of commonly used materials such as agglomerated and full cinderblocks and laterite blocks and therefore is a better insulating material.In addition,its thermal inertia is the highest compared to commonly used materials of agglomerated and full cinderblocks,laterite blocks and compressed earth blocks,which implies a longer time lag.On the basis of mechanical resistance,with a compression resistance of 3.61 MPa,the studied material meets the requirement of CRATerre and NBF 02-003(2009)as a material for construction of single-storey buildings.Therefore,this material,containing 1%Hibiscus sabdariffa fibers and compacted by vibration,is a suitable material for the walls of standing buildings and for thermal comfort in hot dry climates.
基金financially supported by the Research Council of Norway under the M-HEAT project(No.294689)the HyLINE Project(No.294739)All simulation resources are provided by the Norwegian Metacenter for Computational Science(Nos.NN9110K and NN9391K).
文摘Hydrogen as an interstitial solute at grain boundaries(GBs)can have a catastrophic impact on the mechanical properties of many metals.Despite the global research effort,the underlying hydrogen-GB interactions in polycrystals remain inadequately understood.In this study,using Voronoi tessellations and atomistic simulations,we elucidate the hydrogen segregation energy spectrum at the GBs of polycrystalline nickel by exploring all the topologically favorable segregation sites.Three distinct peaks in the energy spectrum are identified,corresponding to different structural fingerprints.The first peak(-0.205 eV)represents the most favorable segregation sites at GB core,while the second and third peaks account for the sites at GB surface.By incorporating a thermodynamic model,the spectrum enables the determination of the equilibrium hydrogen concentrations at GBs,unveiling a remarkable two to three orders of magnitude increase compared to the bulk hydrogen concentration reported in experimental studies.The identified structures from the GB spectrum exhibit vastly different behaviors in hydrogen segregation and diffusion,with the low-barrier channels inside GB core contributing to short-circuit diffusion,while the high energy gaps between GB and neighboring lattice serving as on-plane diffusion barriers.Mean square displacement analysis further confirms the findings,and shows that the calculated GB diffusion coefficient is three orders of magnitude greater than that of lattice.The present study has a significant implication for practical applications since it offers a tool to bridge the gap between atomic-scale interactions and macroscopic behaviors in engineering materials.