The authors regret<to remove Prof.Jien-Wei Yeh from the authorship for some reason.The removal is agreed by Prof.Jien-Wei Yeh>.The authors would like to apologise for any inconvenience caused.
Precipitation-hardened high entropy alloys(HEAs)with carefully tuned compositions have shown excellent mechanical properties,demonstrating great potential for engineering applications.However,due to the lack of precis...Precipitation-hardened high entropy alloys(HEAs)with carefully tuned compositions have shown excellent mechanical properties,demonstrating great potential for engineering applications.However,due to the lack of precise multiple phase diagrams,the composition design of multi-principal-component HEAs still inevitably relies on the extremely time-consuming trial-and-error approach.The present study,on the basis of powerful composition quantification ability of atom probe tomography(APT)technology,proposed a framework to guide the quantitative design of precipitation-hardened HEAs.In this framework,the elemental partitioning was used as a crucial route to avoid the thermodynamic challenge of designing precipitation-hardened HEAs.As a case study,the role of Ti/Al ratio in the design ofγ-γ’HEAs was predicted through the proposed framework and then validated by experimental studies.The framework predicted that when the total content of Ti and Al is fixed,a higher Ti/Al ratio makesγ-γ’HEA stronger.APT and mechanical results agreed well with these predictions and validated the feasibility of the framework.These findings provided a new route to design the precipitation-hardened alloys and a deeper insight into the design ofγ-γ’HEA.展开更多
文摘The authors regret<to remove Prof.Jien-Wei Yeh from the authorship for some reason.The removal is agreed by Prof.Jien-Wei Yeh>.The authors would like to apologise for any inconvenience caused.
基金financially supported by the Hong Kong Research Grant Council(Nos.CityU 11212915 and CityU 11205018)the National Natural Science foundation of China(Nos.51771149,52001266+1 种基金51901119)Natural Science Foundation of ShaanXi Province in China(No.2020JQ-720)。
文摘Precipitation-hardened high entropy alloys(HEAs)with carefully tuned compositions have shown excellent mechanical properties,demonstrating great potential for engineering applications.However,due to the lack of precise multiple phase diagrams,the composition design of multi-principal-component HEAs still inevitably relies on the extremely time-consuming trial-and-error approach.The present study,on the basis of powerful composition quantification ability of atom probe tomography(APT)technology,proposed a framework to guide the quantitative design of precipitation-hardened HEAs.In this framework,the elemental partitioning was used as a crucial route to avoid the thermodynamic challenge of designing precipitation-hardened HEAs.As a case study,the role of Ti/Al ratio in the design ofγ-γ’HEAs was predicted through the proposed framework and then validated by experimental studies.The framework predicted that when the total content of Ti and Al is fixed,a higher Ti/Al ratio makesγ-γ’HEA stronger.APT and mechanical results agreed well with these predictions and validated the feasibility of the framework.These findings provided a new route to design the precipitation-hardened alloys and a deeper insight into the design ofγ-γ’HEA.