Chronic inflammation is often associated with alcoholrelated medical conditions. The key inducer of such inflammation, and also the best understood, is gut microflora-derived lipopolysaccharide (LPS). Alcohol can sign...Chronic inflammation is often associated with alcoholrelated medical conditions. The key inducer of such inflammation, and also the best understood, is gut microflora-derived lipopolysaccharide (LPS). Alcohol can significantly increase the translocation of LPS from the gut. In healthy individuals, the adverse effects of LPS are kept in check by the actions and interactions of multiple organs. The liver plays a central role in detoxifying LPS and producing a balanced cytokine milieu. The central nervous system contributes to anti-inflammatory regulation through neuroimmunoendocrine actions. Chronic alcohol use impairs not only gut and liver functions, but also multi-organ interactions, leading to persistent systemic inflammation and ultimately, to organ damage. The study of these interactions may provide potential new targets for therapeutic intervention.展开更多
A recent study of chemotaxis revealed a new role for the proto-oncogene Ras in the social ameba Dictyostelium discoideum.Chemotaxis,the directional movement of cells toward chemokines and other chemoattractants,plays ...A recent study of chemotaxis revealed a new role for the proto-oncogene Ras in the social ameba Dictyostelium discoideum.Chemotaxis,the directional movement of cells toward chemokines and other chemoattractants,plays critical roles in diverse physiological processes,such as mobilization of immune cells to fight invading microorganisms,targeting of metastatic cancer cells to specific tissues,and guidance of sperm cells to ova during fertilization.This work,published in the July 26 issue of The Journal of Cell Biology,was conducted in Dr.Devreotes’lab at John Hopkins University and Dr.Parent’s lab at National Cancer Institute.This research team demonstrated that RasC functions as an upstream regulator of TORC2 and thereby governs the effects of TORC2-PKB signaling on the cytoskeleton and cell migration.展开更多
文摘Chronic inflammation is often associated with alcoholrelated medical conditions. The key inducer of such inflammation, and also the best understood, is gut microflora-derived lipopolysaccharide (LPS). Alcohol can significantly increase the translocation of LPS from the gut. In healthy individuals, the adverse effects of LPS are kept in check by the actions and interactions of multiple organs. The liver plays a central role in detoxifying LPS and producing a balanced cytokine milieu. The central nervous system contributes to anti-inflammatory regulation through neuroimmunoendocrine actions. Chronic alcohol use impairs not only gut and liver functions, but also multi-organ interactions, leading to persistent systemic inflammation and ultimately, to organ damage. The study of these interactions may provide potential new targets for therapeutic intervention.
文摘A recent study of chemotaxis revealed a new role for the proto-oncogene Ras in the social ameba Dictyostelium discoideum.Chemotaxis,the directional movement of cells toward chemokines and other chemoattractants,plays critical roles in diverse physiological processes,such as mobilization of immune cells to fight invading microorganisms,targeting of metastatic cancer cells to specific tissues,and guidance of sperm cells to ova during fertilization.This work,published in the July 26 issue of The Journal of Cell Biology,was conducted in Dr.Devreotes’lab at John Hopkins University and Dr.Parent’s lab at National Cancer Institute.This research team demonstrated that RasC functions as an upstream regulator of TORC2 and thereby governs the effects of TORC2-PKB signaling on the cytoskeleton and cell migration.