Effects of tilt angles of reflective cup structure and phosphor surface geometries on light extraction efficiency and angular color uniformity (ACU) of phosphor converted light emitting diodes (pcLED) are investig...Effects of tilt angles of reflective cup structure and phosphor surface geometries on light extraction efficiency and angular color uniformity (ACU) of phosphor converted light emitting diodes (pcLED) are investigated by Monte Carlo ray-tracing simulations. It is found that tilt angles of reflective cup and phosphor surface geometries affect the light extraction efficiency and the ACU distinctly. When the tilt angle varied from 60° to 15°, the light extraction efficiency of LED can achieve the improvements of 13.87%, 18.25% and 14.79% respectively, when the phosphor surface geometry is concave, flat and convex, respectively. It is also found the variety law of phosphor concentrations with the change of tilt angles and phosphor surface geometries to maintain a fixed correlated color temperature (CCT).展开更多
In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (8...In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.展开更多
基金The authors would like to acknowledge the financial support in part from the Major State Basic Research Development Program of the Ministry of Science and Technology of China (No. 2011CB013105), and in part by the National Natural Science Foundation of China (Grant No. 2011AA03A109).
文摘Effects of tilt angles of reflective cup structure and phosphor surface geometries on light extraction efficiency and angular color uniformity (ACU) of phosphor converted light emitting diodes (pcLED) are investigated by Monte Carlo ray-tracing simulations. It is found that tilt angles of reflective cup and phosphor surface geometries affect the light extraction efficiency and the ACU distinctly. When the tilt angle varied from 60° to 15°, the light extraction efficiency of LED can achieve the improvements of 13.87%, 18.25% and 14.79% respectively, when the phosphor surface geometry is concave, flat and convex, respectively. It is also found the variety law of phosphor concentrations with the change of tilt angles and phosphor surface geometries to maintain a fixed correlated color temperature (CCT).
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.50835005)the National High Technology Research and Development Program of China(No.2009AA03A1A3)
文摘In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.