Measurement of the fluorescence comportment of Bougainvillea xbuttiana flowers embedded in silica xerogels matrix prepared with two different water to tetraethyl-orthosilicate [Si(OC<sub>2</sub>H<sub>...Measurement of the fluorescence comportment of Bougainvillea xbuttiana flowers embedded in silica xerogels matrix prepared with two different water to tetraethyl-orthosilicate [Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>] ratio molar of 11 and 5, without heat-treatment, we report the grade of biostability of compound. The structural comportment for the PSI and PSII present in Bougainvillea flower is similar to the structural comportment for these photosystems present in leaves when they are incorporated on inorganic matrix such as silica xerogels. The contribution of the natural pigment of this kind of flower such as betalains which consist of betaxanthins and betacyanins, determines their colors contributed in the range of wavelength from about 550 nm to 660 nm.展开更多
This work studied the thermostability and the biostability of chlorophyll species obtained from an extract of spinach leaves embedded in a silica xerogel matrix. The analysis was done by monitoring the photosystem II ...This work studied the thermostability and the biostability of chlorophyll species obtained from an extract of spinach leaves embedded in a silica xerogel matrix. The analysis was done by monitoring the photosystem II (PSII) using fluorescence spectroscopy. Samples were prepared using the sol gel method with a molar ratio of ethanol/H<sub>2</sub>O/TEOS of 4:11.6:1. Then, silica xerogel matrix was loaded with an extract of spinach leaves, obtained in dark conditions. The measurement of the fluorescence spectra was done at selected temperatures to the corresponding non-physiological regimen. Results indicate that the PSII band position remains unchanged when heat treatment temperature increases up 200°C. For temperatures above 100?C, the fluorescence intensity diminishes linearly when the temperature increases. The photosystem II embedded in silica xerogel matrix is decomposed at temperatures above 200°C.展开更多
文摘Measurement of the fluorescence comportment of Bougainvillea xbuttiana flowers embedded in silica xerogels matrix prepared with two different water to tetraethyl-orthosilicate [Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>] ratio molar of 11 and 5, without heat-treatment, we report the grade of biostability of compound. The structural comportment for the PSI and PSII present in Bougainvillea flower is similar to the structural comportment for these photosystems present in leaves when they are incorporated on inorganic matrix such as silica xerogels. The contribution of the natural pigment of this kind of flower such as betalains which consist of betaxanthins and betacyanins, determines their colors contributed in the range of wavelength from about 550 nm to 660 nm.
文摘This work studied the thermostability and the biostability of chlorophyll species obtained from an extract of spinach leaves embedded in a silica xerogel matrix. The analysis was done by monitoring the photosystem II (PSII) using fluorescence spectroscopy. Samples were prepared using the sol gel method with a molar ratio of ethanol/H<sub>2</sub>O/TEOS of 4:11.6:1. Then, silica xerogel matrix was loaded with an extract of spinach leaves, obtained in dark conditions. The measurement of the fluorescence spectra was done at selected temperatures to the corresponding non-physiological regimen. Results indicate that the PSII band position remains unchanged when heat treatment temperature increases up 200°C. For temperatures above 100?C, the fluorescence intensity diminishes linearly when the temperature increases. The photosystem II embedded in silica xerogel matrix is decomposed at temperatures above 200°C.