<span style="font-family:Verdana;">A simple method for assessment of the toxicity and antidote effect of selenium nanoparticles with </span><i><i><span style="font-family:Verd...<span style="font-family:Verdana;">A simple method for assessment of the toxicity and antidote effect of selenium nanoparticles with </span><i><i><span style="font-family:Verdana;">Paramecium</span></i><span> <i><span style="font-family:Verdana;">caudatum</span></i><span style="font-family:Verdana;"></span></span></i><span style="font-family:Verdana;"> is presented. Light microscopy in combination with computerized video tracking is employed for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">determination of </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">survival time of <i></i></span><i><i><span style="font-family:Verdana;">P.</span></i><span> <i><span style="font-family:Verdana;">caudatum</span></i><span style="font-family:Verdana;"></span></span></i></span><span style="font-family:Verdana;">. Up to 800 mg/L, selenium nanoparticles are not acutely toxic. </span><span style="font-family:Verdana;">With</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> respect to a potential antidote effect, the lethality of silver nanoparticles, silver nitrate, sodium hydrogen selenite, and sodium selenite to <i></i></span><i><i><span style="font-family:Verdana;">P.</span></i><span> <i><span style="font-family:Verdana;">caudatum</span></i><span style="font-family:Verdana;"></span></span></i></span><span style="font-family:Verdana;"> was decreased and survival time was extend</span><span style="font-family:Verdana;">ed upon pre-treatment with selenium nanoparticles. Taken together, these findings suggest that administration of selenium nanoparticles attenuates</span><span style="font-family:Verdana;"> exposure </span><span style="font-family:Verdana;">to</span><span style="font-family:Verdana;"> toxicants. Selenium nanoparticles could be a good functional additive for food management in animals.</span>展开更多
Methionine(Met)is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth.The present study examined the effect of in ovo injection of D...Methionine(Met)is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth.The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health.Fertilized eggs of the two genotypes,TETRA-SL layer hybrid(TSL)—commercial layer hybrid and Hungarian Partridge colored hen breed(HPC)—a native genotype,were randomly distributed into four treatments for each genotype.The treatment groups include the following:1)control non-injected eggs(NoIn);2)saline-injected(SaIn);3)DL-Met injected(DLM);and 4)L-Met injected(LM).The in ovo injection was carried out on 17.5 d of embryonic development;after hatching,eight chicks per group were sacrificed,and the jejunum was extracted for analysis.The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width,villus height,and villus area(P<0.05)compared to the control.The DLM group had significantly reduced crypt depth,glutathione(GSH)content,glutathione S-transferase 3 alpha(GST3),occludin(OCLN)gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group(P<0.05).The HPC genotype has overexpressed insulin-like growth factor 1(IGF1)gene,tricellulin(MD2),occludin(OCLN),superoxide dismutase 1(SOD1),and GST3 genes than the TSL genotype(P<0.05).In conclusion,these findings showed that in ovo injection of Met enhanced intestinal development,and function,with genotypes responding differently under normal conditions.Genotypes also influenced the expression of intestinal antioxidants,tight junction,and growth-related genes.展开更多
文摘<span style="font-family:Verdana;">A simple method for assessment of the toxicity and antidote effect of selenium nanoparticles with </span><i><i><span style="font-family:Verdana;">Paramecium</span></i><span> <i><span style="font-family:Verdana;">caudatum</span></i><span style="font-family:Verdana;"></span></span></i><span style="font-family:Verdana;"> is presented. Light microscopy in combination with computerized video tracking is employed for </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">determination of </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">survival time of <i></i></span><i><i><span style="font-family:Verdana;">P.</span></i><span> <i><span style="font-family:Verdana;">caudatum</span></i><span style="font-family:Verdana;"></span></span></i></span><span style="font-family:Verdana;">. Up to 800 mg/L, selenium nanoparticles are not acutely toxic. </span><span style="font-family:Verdana;">With</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> respect to a potential antidote effect, the lethality of silver nanoparticles, silver nitrate, sodium hydrogen selenite, and sodium selenite to <i></i></span><i><i><span style="font-family:Verdana;">P.</span></i><span> <i><span style="font-family:Verdana;">caudatum</span></i><span style="font-family:Verdana;"></span></span></i></span><span style="font-family:Verdana;"> was decreased and survival time was extend</span><span style="font-family:Verdana;">ed upon pre-treatment with selenium nanoparticles. Taken together, these findings suggest that administration of selenium nanoparticles attenuates</span><span style="font-family:Verdana;"> exposure </span><span style="font-family:Verdana;">to</span><span style="font-family:Verdana;"> toxicants. Selenium nanoparticles could be a good functional additive for food management in animals.</span>
基金awarded a Stipendium Hungaricum Scholarship for Ph.D.studiesthe support of the OTKA grant(K139021)
文摘Methionine(Met)is an essential and first limiting amino acid in the poultry diet that plays a significant role in chicken embryonic development and growth.The present study examined the effect of in ovo injection of DL-Met and L-Met sources and genotypes on chicken embryonic-intestinal development and health.Fertilized eggs of the two genotypes,TETRA-SL layer hybrid(TSL)—commercial layer hybrid and Hungarian Partridge colored hen breed(HPC)—a native genotype,were randomly distributed into four treatments for each genotype.The treatment groups include the following:1)control non-injected eggs(NoIn);2)saline-injected(SaIn);3)DL-Met injected(DLM);and 4)L-Met injected(LM).The in ovo injection was carried out on 17.5 d of embryonic development;after hatching,eight chicks per group were sacrificed,and the jejunum was extracted for analysis.The results showed that both DLM and LM groups had enhanced intestinal development as evidenced by increased villus width,villus height,and villus area(P<0.05)compared to the control.The DLM group had significantly reduced crypt depth,glutathione(GSH)content,glutathione S-transferase 3 alpha(GST3),occludin(OCLN)gene expression and increased villus height to crypt depth ratio in the TSL genotype than the LM group(P<0.05).The HPC genotype has overexpressed insulin-like growth factor 1(IGF1)gene,tricellulin(MD2),occludin(OCLN),superoxide dismutase 1(SOD1),and GST3 genes than the TSL genotype(P<0.05).In conclusion,these findings showed that in ovo injection of Met enhanced intestinal development,and function,with genotypes responding differently under normal conditions.Genotypes also influenced the expression of intestinal antioxidants,tight junction,and growth-related genes.