The degree of dietary specialization has a fundamental impact on the ecological function and interactions of suspension feeders.While niche differentiation by food particle size is common among obligate suspension fee...The degree of dietary specialization has a fundamental impact on the ecological function and interactions of suspension feeders.While niche differentiation by food particle size is common among obligate suspension feeders,its role is not evident in facultative ones.In this study,we aimed at providing new insights on the matter by focusing on sympatric mysid species.As mysids use different mechanisms for raptorial and filter-feeding,they represent a more adequate model system than for example,the more extensively studied copepods.We made morpholog-ical measurements on the 4 coexisting invasive Ponto-Caspian mysid species to determine the areas and mesh sizes of their filters.We also quantified their clearance rates on the microalga Cryptomonas sp.in a laboratory experiment to reveal how morphological differences manifest in their overall filtering capacity.We found relatively small but consistent differences in the primary filter area among the species,indicating that morphological constraints due to the enclosed position of the setae might limit the possibility for differentiation.The primary filter mesh sizes were small in all 4 species(0.69-2.73μm)with moderate but consistent intraspecific differences,suggesting that the benefit of being able to capture small particles might outweigh the pressure for differentiation.The observed clearance rates were in accordance with the morphological characteristics of the species,highlighting that auxiliary filters(present in one of the species,Limnomysis benedeni)are needed to increase filtering capacity considerably.Our study confirmed that food particle size can contribute to the niche differentiation of facultative filter feeders,but also indicated that they can tolerate a higher overlap than obligate ones.The observed differences were related to the habitat preferences and predatory potentials of the species,suggesting that complementarity among the different niche axes might further facilitate theircoexistence.展开更多
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa,as well as providing new information of fungal taxa worldwide.Th...Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa,as well as providing new information of fungal taxa worldwide.This article is the 11th contribution to the fungal diversity notes series,in which 126 taxa distributed in two phyla,six classes,24 orders and 55 families are described and illustrated.Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China,India and Thailand,as well as in some other European,North American and South American countries.Taxa described in the present study include two new families,12 new genera,82 new species,five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports.The two new families are Eriomycetaceae(Dothideomycetes,family incertae sedis)and Fasciatisporaceae(Xylariales,Sordariomycetes).The twelve new genera comprise Bhagirathimyces(Phaeosphaeriaceae),Camporesiomyces(Tubeufiaceae),Eriocamporesia(Cryphonectriaceae),Eriomyces(Eriomycetaceae),Neomonodictys(Pleurotheciaceae),Paraloratospora(Phaeosphaeriaceae),Paramonodictys(Parabambusicolaceae),Pseudoconlarium(Diaporthomycetidae,genus incertae sedis),Pseudomurilentithecium(Lentitheciaceae),Setoapiospora(Muyocopronaceae),Srinivasanomyces(Vibrisseaceae)and Xenoanthostomella(Xylariales,genera incertae sedis).The 82 new species comprise Acremonium chiangraiense,Adustochaete nivea,Angustimassarina camporesii,Bhagirathimyces himalayensis,Brunneoclavispora camporesii,Camarosporidiella camporesii,Camporesiomyces mali,Camposporium appendiculatum,Camposporium multiseptatum,Camposporium septatum,Canalisporium aquaticium,Clonostachys eriocamporesiana,Clonostachys eriocamporesii,Colletotrichum hederiicola,Coniochaeta vineae,Conioscypha verrucosa,Cortinarius ainsworthii,Cortinarius aurae,Cortinarius britannicus,Cortinarius heatherae,Cortinarius scoticus,Cortinarius subsaniosus,Cytospora fusispora,Cytospora rosigena,Diaporthe camporesii,Diaporthe nigra,Diatrypella yunnanensis,Dictyosporium muriformis,Didymella camporesii,Diutina bernali,Diutina sipiczkii,Eriocamporesia aurantia,Eriomyces heveae,Ernakulamia tanakae,Falciformispora uttaraditensis,Fasciatispora cocoes,Foliophoma camporesii,Fuscostagonospora camporesii,Helvella subtinta,Kalmusia erioi,Keissleriella camporesiana,Keissleriella camporesii,Lanspora cylindrospora,Loratospora arezzoensis,Mariannaea atlantica,Melanographium phoenicis,Montagnula camporesii,Neodidymelliopsis camporesii,Neokalmusia kunmingensis,Neoleptosporella camporesiana,Neomonodictys muriformis,Neomyrmecridium guizhouense,Neosetophoma camporesii,Paraloratospora camporesii,Paramonodictys solitarius,Periconia palmicola,Plenodomus triseptatus,Pseudocamarosporium camporesii,Pseudocercospora maetaengensis,Pseudochaetosphaeronema kunmingense,Pseudoconlarium punctiforme,Pseudodactylaria camporesiana,Pseudomurilentithecium camporesii,Pseudotetraploa rajmachiensis,Pseudotruncatella camporesii,Rhexocercosporidium senecionis,Rhytidhysteron camporesii,Rhytidhysteron erioi,Septoriella camporesii,Setoapiospora thailandica,Srinivasanomyces kangrensis,Tetraploa dwibahubeeja,Tetraploa pseudoaristata,Tetraploa thrayabahubeeja,Torula camporesii,Tremateia camporesii,Tremateia lamiacearum,Uzbekistanica pruni,Verruconis mangrovei,Wilcoxina verruculosa,Xenoanthostomella chromolaenae and Xenodidymella camporesii.The five new combinations are Camporesiomyces patagoniensis,Camporesiomyces vaccinia,Camposporium lycopodiellae,Paraloratospora gahniae and Rhexocercosporidium microsporum.The 22 new records on host and geographical distribution comprise Arthrinium marii,Ascochyta medicaginicola,Ascochyta pisi,Astrocystis bambusicola,Camposporium pellucidum,Dendryphiella phitsanulokensis,Diaporthe foeniculina,Didymella macrostoma,Diplodia mutila,Diplodia seriata,Heterosphaeria patella,Hysterobrevium constrictum,Neodidymelliopsis ranunculi,Neovaginatispora fuckelii,Nothophoma quercina,Occultibambusa bambusae,Phaeosphaeria chinensis,Pseudopestalotiopsis theae,Pyxine berteriana,Tetraploa sasicola,Torula gaodangensis and Wojnowiciella dactylidis.In addition,the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy,respectively.The holomorph of Diaporthe cynaroidis is also reported for the first time.展开更多
基金The authors thank Peter Dobosy,Adam Egri,Bence Gergacz,Eszter Laczkovszki,Sarah Lecoq,Nicolas Malinge,and Karoly Palffy for their assistance in various phases of the research.Project no.132605 has been implemented with the support provided from the National ResearchDevelopment and Innovation Fund of Hungary,financed under the FK_19 funding scheme.VR acknowledges further support by the NKFIH-138215project.
文摘The degree of dietary specialization has a fundamental impact on the ecological function and interactions of suspension feeders.While niche differentiation by food particle size is common among obligate suspension feeders,its role is not evident in facultative ones.In this study,we aimed at providing new insights on the matter by focusing on sympatric mysid species.As mysids use different mechanisms for raptorial and filter-feeding,they represent a more adequate model system than for example,the more extensively studied copepods.We made morpholog-ical measurements on the 4 coexisting invasive Ponto-Caspian mysid species to determine the areas and mesh sizes of their filters.We also quantified their clearance rates on the microalga Cryptomonas sp.in a laboratory experiment to reveal how morphological differences manifest in their overall filtering capacity.We found relatively small but consistent differences in the primary filter area among the species,indicating that morphological constraints due to the enclosed position of the setae might limit the possibility for differentiation.The primary filter mesh sizes were small in all 4 species(0.69-2.73μm)with moderate but consistent intraspecific differences,suggesting that the benefit of being able to capture small particles might outweigh the pressure for differentiation.The observed clearance rates were in accordance with the morphological characteristics of the species,highlighting that auxiliary filters(present in one of the species,Limnomysis benedeni)are needed to increase filtering capacity considerably.Our study confirmed that food particle size can contribute to the niche differentiation of facultative filter feeders,but also indicated that they can tolerate a higher overlap than obligate ones.The observed differences were related to the habitat preferences and predatory potentials of the species,suggesting that complementarity among the different niche axes might further facilitate theircoexistence.
基金The authors would like to thank Yunnan Provincial Key Programs of Yunnan Eco-friendly Food International Cooperation Research Center Project under Grant 2019ZG00908 and Key Research Program of Frontier Sciences“Response of Asian mountain ecosystems to global change”,CAS,Grant No.QYZDY-SSWSMC014We also thank to the director Jun-Bo Yang and Plant Germplasm and Genomics Center in Germplasm Bank of Wild Species,Kunming Institute of Botany for the molecular laboratory support.Kevin D.Hyde thanks the 2019 high-end foreign expert introduction plan to Kunming Institute of Botany(Granted by the Ministry of Science and Technology of the People’s Republic of China,Grant Number G20190139006)+16 种基金Thailand Research Grants entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans(Grant No.RSA5980068)the future of specialist fungi in a changing climate:baseline data for generalist and specialist fungi associated with ants,Rhododendron species and Dracaena species(Grant No.DBG6080013)Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion(Grant No.RDG6130001)Kevin D.Hyde also thanks Chiang Mai University for the award of visiting Professor.The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0089.Rungtiwa Phookamsak thanks CAS President’s International Fellowship Initiative(PIFI)for young staff(Grant No.Y9215811Q1)the Yunnan Provincial Department of Human Resources and Social Security(Grant No.Y836181261)National Science Foundation of China(NSFC)Project Code 31850410489(Grant No.Y81I982211)for financial support.Dr.Shaun Pennycook and Prof Eric H.C.McKenzie are thanked for his essential nomenclatural reviewRajesh Jeewon thanks Mae Fah Luang University for the award of a Visiting Scholar and University of Mauritius for research support.Jian-Kui Liu thanks the National Natural Science Foundation of China(NSFC 31600032)Chaynard Phukhamsakda would like to thank the Royal Golden Jubilee PhD Program under Thailand Research Fund(RGJ)for a personal grant to C.Phukhamsakda(The Scholarship No.PHD/0020/2557 to study towards a Ph.D.).This research work was partially supported by Chiang Mai University.Ausana Mapook thanks to Research and Researchers for Industries(RRI)under Thailand Research Fund for a personal Grant(PHD57I0012)with the German Academic Exchange Service(DAAD)for a joint TRF-DAAD(PPP 2017-2018)academic exchange grant to K.D.Hyde and M.Stadler.Witoon Purahong and Tesfaye Wubet are thanked for funding support of Molecular work and also thanks to Katalee Jariyavidyanont,Maitree Malaithong and Benjawan Tanunchai for their valuable help.Saowaluck Tibpromma would like to thank the International Postdoctoral Exchange Fellowship Program(Number Y9180822S1)CAS President’s International Fellowship Initiative(PIFI)(Number 2020PC0009)China Postdoctoral Science Foundation and Yunnan Human Resources and Social Security Department Foundation for funding her postdoctoral research.V.V.Sarma would like to thank SERB,Department of Science and Technology,Government of India,for funding a project(SERB/SB/SO/PS/18/2014 dt.19.5.2015)and Ministry of Earth Sciences(MOES),Govt.of India for funding a project(Sanction order:MOES/36/OO1S/Extra/40/2014/PC-IV dt.14.01.2015)the Department of Biotechnology,Pondicherry University for facilitiesforest departments of Andaman and Nicobar Islands and Tamil Nadu,India are thanked for providing permission to collect samples.M.Niranjan thanks SERB,Govt.of India for a fellowship and B.Devadatha thanks MOES,Govt.of India for a fellowship.Napalai Chaiwan would like to thank the Thailand Research Fund(PHD60K0147)Danushka S.Tennakoon would like to thank Lakmali Dissanayake and Binu Samarakoon for their support.Dhanushka N.Wanasinghe would like to thank CAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Number 2019PC0008)Peter E.Mortimer and Dhanushka N.Wanasinghe thank the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following Grants:41761144055,41771063 and Y4ZK111B01.Mingkwan Doilom would like to thank the 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province(grant no.:Y934283261)the 64th batch of China Postdoctoral Science Foundation(grant no.:Y913082271).Amanda Lucia Alves acknowledges scholarships from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES),Ana Carla da Silva Santos acknowledges scholarships from the Conselho Nacional de Pesquisa(CNPq)and Patricia Vieira Tiago acknowledges financial support from the Pro-Reitoria de Pesquisa e Pos-Graduacao(Propesq).Dan-Feng Bao thanks Dr.Zong-Long Luo and Prof.Dr.Hong-Yan Su for their available suggestions on fungal taxonomy as well as providing partial financial research support.Shi-Ke Huang thanks Prof.Dr.Ting-Chi Wen for partially support on research study.Danny Haelewaters was funded for fieldwork in Panama by the David Rockefeller Center for Latin American Studies(2017 Summer Research Travel Grant),Smithsonian Tropical Research Institute(2017 Short-Term Research Fellowship),Mycological Society of America(2016 Graduate Research Fellowship,2017 Robert W.Lichtwardt Award),and through the Harvard University Herbaria(Fernald Fund).D.Haelewaters thanks W.Owen McMillan(Smithsonian Tropical Research Institute,Panama)and Edilma Gomez(Molecular Multi-User’s Lab,Panama)for providing lab space at STRI.Walter P.Pfliegler and EnikőHorvath are deeply indebted to Matthias Sipiczki(University of Debrecen,Hungary)for his support for generations of yeasts researchers,as well as to Ida Miklos(University of Debrecen,Hungary)for a continuous support for yeast studies and to Anita Csabaine Olah(University of Debrecen,Hungary)for excellent technical support.Alexandra Imre was supported by the UNKP-19-3-I-234 New National Excellence Program of the Ministry of Human Capacities of Hungary.Walter P.Pfliegler,EnikőHorvath,and Alexandra Imre are deeply thankful to Gabor Peter for his comments on yeast taxonomy.Walter P.Pfliegler was supported by the Albert Szent-Gyorgyi Young Investigator Award.Kunhiraman C.Rajeshkumar thanks SERB,Department of Science and Technology,Government of India for providing financial support under the Project YSS/2015/001590 and Dr.Prashant K.Dhakephalkar,Director,Agharkar Research Institute for providing the facility.Sanjay K.Singh and Shiv Mohan Singh thank Dr.Prashant K.Dhakephalkar,Director,Agharkar Research Institute and Head,Department of Botany,Banaras Hindu University(BHU),Varanasi(UP)for providing necessary facilities.Shiwali Rana thanks SP Pune University and UGC New Delhi for Fellowship(JRF).Kunthida Phutthacharoen would like to thank the Royal Golden Jubilee PhD Program under Thailand Research Fund(RGJ)No.PHD/0002/2560.Saranyaphat Boonmee would like to thank the Thailand Research Fund(No.TRG6180001)and Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn-Mae Fah Luang University.Qi Zhao and Ming Zeng are supported by the open research project of“Cross-Cooperative Team”of the Germplasm Bank of Wild Species,Kunming Institute of Botany,Chinese Academy of Science,and The Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China(2019HJ2096001006)Subodini N.Wijesinghe offers her profound gratitude to Dr.Samantha C.Karunarathne for financial support on molecular work under the National Science Foundation of China(NSFC)Project Code:31750110478 as well as Prof.Dr.Yong Wang,Dr.Udeni Jayalal and Achala R.Rathnayaka for their valuable suggestions.Renato Lucio Mendes Alvarenga and Tatiana Baptista Gibertoni acknowledge Ailton Matheus for the specimen,Pos-Graduacao em Biologia de Fungos(UFPE,Brazil)for support,CNPq(PQ 307601/2015-3)for financing this research and CAPES and CNPq for the PhD scholarship of RLM Alvarenga.Wei Dong would like to thank Huang Zhang for supporting this work under the National Natural Science Foundation of China(Project ID:NSF 31500017).Jing Yang would like to thank Prof.Zuoyi Liu for his support and great help on the lab work.
文摘Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa,as well as providing new information of fungal taxa worldwide.This article is the 11th contribution to the fungal diversity notes series,in which 126 taxa distributed in two phyla,six classes,24 orders and 55 families are described and illustrated.Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China,India and Thailand,as well as in some other European,North American and South American countries.Taxa described in the present study include two new families,12 new genera,82 new species,five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports.The two new families are Eriomycetaceae(Dothideomycetes,family incertae sedis)and Fasciatisporaceae(Xylariales,Sordariomycetes).The twelve new genera comprise Bhagirathimyces(Phaeosphaeriaceae),Camporesiomyces(Tubeufiaceae),Eriocamporesia(Cryphonectriaceae),Eriomyces(Eriomycetaceae),Neomonodictys(Pleurotheciaceae),Paraloratospora(Phaeosphaeriaceae),Paramonodictys(Parabambusicolaceae),Pseudoconlarium(Diaporthomycetidae,genus incertae sedis),Pseudomurilentithecium(Lentitheciaceae),Setoapiospora(Muyocopronaceae),Srinivasanomyces(Vibrisseaceae)and Xenoanthostomella(Xylariales,genera incertae sedis).The 82 new species comprise Acremonium chiangraiense,Adustochaete nivea,Angustimassarina camporesii,Bhagirathimyces himalayensis,Brunneoclavispora camporesii,Camarosporidiella camporesii,Camporesiomyces mali,Camposporium appendiculatum,Camposporium multiseptatum,Camposporium septatum,Canalisporium aquaticium,Clonostachys eriocamporesiana,Clonostachys eriocamporesii,Colletotrichum hederiicola,Coniochaeta vineae,Conioscypha verrucosa,Cortinarius ainsworthii,Cortinarius aurae,Cortinarius britannicus,Cortinarius heatherae,Cortinarius scoticus,Cortinarius subsaniosus,Cytospora fusispora,Cytospora rosigena,Diaporthe camporesii,Diaporthe nigra,Diatrypella yunnanensis,Dictyosporium muriformis,Didymella camporesii,Diutina bernali,Diutina sipiczkii,Eriocamporesia aurantia,Eriomyces heveae,Ernakulamia tanakae,Falciformispora uttaraditensis,Fasciatispora cocoes,Foliophoma camporesii,Fuscostagonospora camporesii,Helvella subtinta,Kalmusia erioi,Keissleriella camporesiana,Keissleriella camporesii,Lanspora cylindrospora,Loratospora arezzoensis,Mariannaea atlantica,Melanographium phoenicis,Montagnula camporesii,Neodidymelliopsis camporesii,Neokalmusia kunmingensis,Neoleptosporella camporesiana,Neomonodictys muriformis,Neomyrmecridium guizhouense,Neosetophoma camporesii,Paraloratospora camporesii,Paramonodictys solitarius,Periconia palmicola,Plenodomus triseptatus,Pseudocamarosporium camporesii,Pseudocercospora maetaengensis,Pseudochaetosphaeronema kunmingense,Pseudoconlarium punctiforme,Pseudodactylaria camporesiana,Pseudomurilentithecium camporesii,Pseudotetraploa rajmachiensis,Pseudotruncatella camporesii,Rhexocercosporidium senecionis,Rhytidhysteron camporesii,Rhytidhysteron erioi,Septoriella camporesii,Setoapiospora thailandica,Srinivasanomyces kangrensis,Tetraploa dwibahubeeja,Tetraploa pseudoaristata,Tetraploa thrayabahubeeja,Torula camporesii,Tremateia camporesii,Tremateia lamiacearum,Uzbekistanica pruni,Verruconis mangrovei,Wilcoxina verruculosa,Xenoanthostomella chromolaenae and Xenodidymella camporesii.The five new combinations are Camporesiomyces patagoniensis,Camporesiomyces vaccinia,Camposporium lycopodiellae,Paraloratospora gahniae and Rhexocercosporidium microsporum.The 22 new records on host and geographical distribution comprise Arthrinium marii,Ascochyta medicaginicola,Ascochyta pisi,Astrocystis bambusicola,Camposporium pellucidum,Dendryphiella phitsanulokensis,Diaporthe foeniculina,Didymella macrostoma,Diplodia mutila,Diplodia seriata,Heterosphaeria patella,Hysterobrevium constrictum,Neodidymelliopsis ranunculi,Neovaginatispora fuckelii,Nothophoma quercina,Occultibambusa bambusae,Phaeosphaeria chinensis,Pseudopestalotiopsis theae,Pyxine berteriana,Tetraploa sasicola,Torula gaodangensis and Wojnowiciella dactylidis.In addition,the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy,respectively.The holomorph of Diaporthe cynaroidis is also reported for the first time.