期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana 被引量:3
1
作者 Xiaolei Wang Jiani Chen +8 位作者 Zhouli Xie Sanzhen Liu Trevor Nolan Huaxun Ye Mingcai Zhang Hongqing Guo Patrick S. Schnable Zhaohu Li Yanhai Yin 《Molecular Plant》 SCIE CAS CSCD 2014年第8期1303-1315,共13页
The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development, and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other... The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development, and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other signaling components to regulate the BES1/BZR1 family of transcription factors, which modulates the expression of thousands of genes. How BESl/BZR1 and their interacting proteins function to regulate the large number of genes are not com- pletely understood. Here we report that histone lysine methyltransferase SDG8, implicated in histone 3 lysine 36 diand trimethylation (H3K36me2 and me3), is involved in BR-regulated gene expression. BES1 interacts with SDG8, directly or indirectly through IWSl, a transcription elongation factor involved in BR-regulated gene expression. The knockout mutant sdg8 displays a reduced growth phenotype with compromised BR responses. Global gene expression studies demonstrated that, while BR regulates about 5000 genes in wild-type plants, the hormone regulates fewer than 700 genes in sdg8 mutant. In addition, more than half of BR-regulated genes are differentially affected in sdg8 mutant. A Chromatin Immunoprecipitation (CHIP) experiment showed that H3K36me3 is reduced in BR-regulated genes in the sdg8 mutant. Based on these results, we propose that SDG8 plays an essential role in mediating BR-regulated gene expression. Our results thus reveal a major mechanism by which histone modifications dictate hormonal regulation of gene expression. 展开更多
关键词 BRASSINOSTEROID histone modifications gene regulation.
原文传递
A putative plant organelle RNA recognition protein gene is essential for maize kernel development 被引量:4
2
作者 Antony M.Chettoor Gibum Yi +3 位作者 Elisa Gomez Gregorio Hueros Robert B.Meeley Philip W.Becraft 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第3期236-246,共11页
Basal endosperm transfer layer(BETL) cells are responsible for transferring apoplastic solutes from the maternal pedicel into the endosperm,supplying the grain with compounds required for embryo development and stor... Basal endosperm transfer layer(BETL) cells are responsible for transferring apoplastic solutes from the maternal pedicel into the endosperm,supplying the grain with compounds required for embryo development and storage reserve accumulation.Here,we analyze the maize(Zea mays L.) empty pericarp6(emp6) mutant,which causes early arrest in grain development.The Emp6 tgene function is required independently in both the embryo and endosperm.The emp6 mutant causes a notable effect on the differentiation of BETL cells;the extensive cell wall ingrowths that distinguish BETL cells are diminished and BETL marker gene expression is compromised in mutant kernels.Transposon tagging identified the emp6 locus as encoding a putative plant organelle RNA recognition(PORR) protein,1 of 15 PORR family members in maize.The emp6 transcript is widely detected in plant tissues with highest Researclevels in embryos and developing kernels.EMP6-green fluorescent protein(GFP) fusion proteins transiently expressed in Nicotiana benthamiana leaves were targeted specifically to mitochondria.These results suggest that BETL cell differentiation might be particularly energy intensive,or alternatively,that mitochondria might confer a developmental function. 展开更多
关键词 Empty pericarp endosperm mitochondria RNA processing transfer cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部