期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Blind search for 21-cm absorption systems using a new generation of Chinese radio telescopes
1
作者 Hao-Ran Yu Ue-Li Pen +2 位作者 Tong-Jie Zhang Di Li Xuelei Chen 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第6期1-4,共4页
Neutral hydrogen clouds are known to exist in the Universe, however their spatial distributions and physical properties are poorly understood. Such missing information can be studied by the new generation of Chinese r... Neutral hydrogen clouds are known to exist in the Universe, however their spatial distributions and physical properties are poorly understood. Such missing information can be studied by the new generation of Chinese radio telescopes through a blind search of 21-cm absorption systems. We forecast the capabilities of surveys of 21-cm absorption systems by two representative radio telescopes in China - the Five-hundred-meter Aperture Spherical radio Telescope (FAST) and Tianlai 21-cm cosmology experiment (Tianlai). Facilitated by either the high sensitivity (FAST) or wide field of view (Tianlai) of these telescopes, more than a thousand 21-cm absorption systems can be discovered in a few years, representing orders of magnitude improvement over the cumulative discoveries in the past half a century. 展开更多
关键词 telescopes - surveys - cosmology OBSERVATIONS
下载PDF
Neutrino Mass Constraints from Reconstructing the Large-scale Structure:Systematic Uncertainty
2
作者 Chok Lap Chung Derek Inman +4 位作者 Xin Wang Erhao Shang Zi Zhuang Fucheng Yuan Ue-Li Pen 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第6期65-73,共9页
We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstr... We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys. 展开更多
关键词 (cosmology:)large-scale structure of universe cosmology:observations NEUTRINOS
下载PDF
Cosmological neutrino simulations at extreme scale
3
作者 J.D.Emberson Hao-Ran Yu +8 位作者 Derek Inman Tong-Jie Zhang Ue-Li Pen Joachim Harnois-Deraps Shuo Yuan Huan-Yu Teng Hong-Ming Zhu Xuelei Chen Zhi-Zhong Xing 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2017年第8期89-100,共12页
Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal l... Constraining neutrino mass remains an elusive challenge in modern physics.Precision measurements are expected from several upcoming cosmological probes of large-scale structure.Achieving this goal relies on an equal level of precision from theoretical predictions of neutrino clustering.Numerical simulations of the non-linear evolution of cold dark matter and neutrinos play a pivotal role in this process.We incorporate neutrinos into the cosmological N-body code CUBEP3M and discuss the challenges associated with pushing to the extreme scales demanded by the neutrino problem.We highlight code optimizations made to exploit modern high performance computing architectures and present a novel method of data compression that reduces the phase-space particle footprint from 24 bytes in single precision to roughly 9 bytes.We scale the neutrino problem to the Tianhe-2 supercomputer and provide details of our production run,named Tian Nu,which uses 86%of the machine(13 824 compute nodes).With a total of 2.97 trillion particles,Tian Nu is currently the world’s largest cosmological N-body simulation and improves upon previous neutrino simulations by two orders of magnitude in scale.We finish with a discussion of the unanticipated computational challenges that were encountered during the Tian Nu runtime. 展开更多
关键词 COSMOLOGY theory—large-scale structure of universe—methods NUMERICAL
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部