Acquiring accurate scattering properties is important for rendering translucent materials. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the...Acquiring accurate scattering properties is important for rendering translucent materials. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the appearance of a material. We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image. Furthermore, in various experiments, we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.展开更多
In many-light rendering, a variety of visual and illumination effects, including anti-aliasing,depth of field, volumetric scattering, and subsurface scattering, are combined to create a number of virtual point lights(...In many-light rendering, a variety of visual and illumination effects, including anti-aliasing,depth of field, volumetric scattering, and subsurface scattering, are combined to create a number of virtual point lights(VPLs). This is done in order to simplify computation of the resulting illumination. Naive approaches that sum the direct illumination from many VPLs are computationally expensive;scalable methods can be computed more efficiently by clustering VPLs, and then estimating their sum by sampling a small number of VPLs. Although significant speed-up has been achieved using scalable methods, clustering leads to uncontrollable errors, resulting in noise in the rendered images. In this paper, we propose a method to improve the estimation accuracy of manylight rendering involving such visual and illumination effects. We demonstrate that our method can improve the estimation accuracy by a factor of 2.3 over the previous method.展开更多
基金partly supported by JSPS KAKENHI JP15K16027, JP26700013, and JP15H005918
文摘Acquiring accurate scattering properties is important for rendering translucent materials. In particular, the phase function, which determines the distribution of scattering directions, plays a significant role in the appearance of a material. We propose a distinctive scattering theory that approximates the effect of single scattering to acquire the non-parametric phase function from a single image. Furthermore, in various experiments, we measured the phase functions from several real diluted media and rendered images of these materials to evaluate the effectiveness of our theory.
基金partially supported by JSPS KAKENHI 15H05924 and 18H03348
文摘In many-light rendering, a variety of visual and illumination effects, including anti-aliasing,depth of field, volumetric scattering, and subsurface scattering, are combined to create a number of virtual point lights(VPLs). This is done in order to simplify computation of the resulting illumination. Naive approaches that sum the direct illumination from many VPLs are computationally expensive;scalable methods can be computed more efficiently by clustering VPLs, and then estimating their sum by sampling a small number of VPLs. Although significant speed-up has been achieved using scalable methods, clustering leads to uncontrollable errors, resulting in noise in the rendered images. In this paper, we propose a method to improve the estimation accuracy of manylight rendering involving such visual and illumination effects. We demonstrate that our method can improve the estimation accuracy by a factor of 2.3 over the previous method.