期刊文献+
共找到400篇文章
< 1 2 20 >
每页显示 20 50 100
The present status and prospects in the research of orbital dynamics and control near small celestial bodies
1
作者 Pingyuan Cui Dong Qiao 《Theoretical & Applied Mechanics Letters》 CAS 2014年第1期1-14,共14页
Small celestial body exploration is of great significance to deep space activities. The dynamics and control of orbits around small celestial bodies is of top priority in the exploration research. It includes the mode... Small celestial body exploration is of great significance to deep space activities. The dynamics and control of orbits around small celestial bodies is of top priority in the exploration research. It includes the modeling of dynamics environment and the orbital dynamics mechanism. This paper introduced state-ofthe-art researches, major challenges, and future trends in this field. Three topics are mainly discussed: the gravitational field modeling of irregular-shaped small celestial bodies, natural orbital dynamics and control, and controlled orbital dynamics. Finally, constructive suggestions are made for China’s future space exploration missions. 展开更多
关键词 small celestial body exploration dynamics and control gravitational field of irregular-shaped body natural orbital dynamics controlled orbital dynamics
下载PDF
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
2
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC DYNAMICS MULTIBODY system SYMPLECTIC method particle SWARM optimization(PSO)algorithm instantaneous optimal control
下载PDF
Assessment and control of the mine tremor disaster induced by the energy accumulation and dispersion of thick-hard roofs
3
作者 Bin Yu Mingxian Peng +1 位作者 Yang Tai Shuai Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期925-941,共17页
In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foun... In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters. 展开更多
关键词 Dynamic disaster Energy Hard and thick roof Timoshenko beam
下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment
4
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 Rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
下载PDF
On fractional discrete financial system:Bifurcation,chaos,and control
5
作者 Louiza Diabi Adel Ouannas +2 位作者 Amel Hioual Shaher Momani Abderrahmane Abbes 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期129-140,共12页
The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)frac... The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB. 展开更多
关键词 financial model stability CHAOS commensurate and incommensurate orders COMPLEXITY
下载PDF
A logistic-Lasso-regression-based seismic fragility analysis method for electrical equipment considering structural and seismic parameter uncertainty
6
作者 Cui Jiawei Che Ailan +1 位作者 Li Sheng Cheng Yongfeng 《Earthquake Engineering and Engineering Vibration》 2025年第1期169-186,共18页
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th... Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence. 展开更多
关键词 seismic fragility UNCERTAINTY logistic lasso regression ±1000 kV main transformer sensitivity analysis
下载PDF
Mechanism and control technology of strong ground pressure behaviour induced by high-position hard roofs in extra-thick coal seam mining 被引量:11
7
作者 Chao Pan Binwei Xia +2 位作者 Yujun Zuo Bin Yu Changnan Ou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第3期499-511,共13页
This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for... This work aimed at revealing the mechanism of strong ground pressure behaviour(SGPB)induced by high-position hard roof(HHR).Based on the supporting structures model of HHR,a modified voussoir beam mechanical model for HHR was established by considering the gangue support coefficient,through which the modified expressions of limit breaking span and breaking energy of HHR were deduced.Combined with the relationship between the dynamic-static loading stress of supporting body(hydraulic support and coal wall)and its comprehensive supporting strength,the criteria of ground pressure behaviour(GPB)induced by HHR were discussed.The types of Ⅰ_(1),Ⅰ_(2),Ⅱ_(1),andⅡ_(2) of GPB were interpreted.Results showed that types Ⅰ_(1) and Ⅰ_(2) were the main forms of SGPB in extra-thick coal seam mining.The main manifestation of SGPB was static stress,which was mainly derived from the instability of HHR rather than fracture.Accordingly,an innovative control technology was proposed,which can weaken static load by vertical-well separated fracturing HHR.The research results have been successfully applied to the 8101 working face in Tashan coal mine,Shanxi Province,China.The results of a digital borehole camera observation and stress monitoring proved the rationality of the GPB criteria.The control technology was successful,paving the way for new possibilities to HHR control for safety mining. 展开更多
关键词 Extra thick coal seam High-position hard roof Strong ground pressure behaviour Supporting structures Criteria of ground pressure behaviour Controlling effects
下载PDF
Experimental investigation on the failure mechanism of a rock landslide controlled by a steep-gentle discontinuity pair 被引量:5
8
作者 HUANG Da ZHONG Zhu GU Dong-ming 《Journal of Mountain Science》 SCIE CSCD 2019年第6期1258-1274,共17页
A type of rock landslide is very common in practical engineering, whose stability is mainly controlled by the rock bridge between the steep tensile crack at the crest and the low-inclination weak discontinuities at th... A type of rock landslide is very common in practical engineering, whose stability is mainly controlled by the rock bridge between the steep tensile crack at the crest and the low-inclination weak discontinuities at the toe(namely, ligament is the term for the locking section in the slope). To obtain a deeper understanding into the failure process of this kind of landslide, twenty-four physical slope models containing a steep-gentle discontinuity pair(a steep crack in the upper part and a low-inclination discontinuity in the lower part) were tested by applying vertical loads at the crests. The results indicate that the inclination angle of the ligament(θ) has great influence on the failure and stability of this type of rock slope. With the change of θ, three failure patterns(five subtypes) concerning the tested slopes can be observed, i.e., tensile failure of the ligament(Type 1), tension-shear failure of the ligament(Type 2) and two-stage failure of the main body(Type 3). The failure process of each failure mode presents five stages in terms of crack development, vertical load, horizontal/vertical displacements and strains in the ligaments. The specific range of the ligament angle between different failure patterns is summarized. The discussion on the failure resistances and ductility of different failure patterns, and the guiding significances of the experimental findings to the stability evaluation and the reinforcement were conducted. 展开更多
关键词 Rock LANDSLIDE FAILURE pattern FAILURE evolution Locking section Crack COALESCENCE
下载PDF
Geotechnical characterization of red shale and its indication for ground control in deep underground mining 被引量:6
9
作者 WANG Dong-yi LI Xi-bing +3 位作者 PENG Kang MA Chun-de ZHANG Zhen-yu LIU Xiao-qian 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期2979-2991,共13页
Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength pr... Geotechnical properties of red shale encountered in deep underground mining were characterized on both laboratory and field scale to reveal its unfavorably in geoenvironment.Its constituents,microstructure,strength properties and water-weakening properties were investigated.In situ stress environment and mining-induced fractured damage zone after excavation were studied to reveal the instability mechanism.The results show that red shale contains swelling and loose clayey minerals as interstitial filling material,producing low shear strength of microstructure and making it vulnerable to water.Macroscopically,a U-shaped curve of uniaxial compressive strength(UCS)exists with the increase of the angle between macro weakness plane and the horizon.However,its tensile strength reduced monotonically with this angle.While immersed in water for72h,its UCS reduced by91.9%comparing to the natural state.Field sonic tests reveal that an asymmetrical geometrical profile of fractured damage zone of gateroad was identified due to geological bedding plane and detailed gateroad layout with regards to the direction of major principle stress.Therefore,red shale is a kind of engineering soft rock.For ground control in underground mining or similar applications,water inflow within several hours of excavation must strictly be prevented and energy adsorbing rock bolt is recommended,especially in large deformation part of gateroad. 展开更多
关键词 red shale soft rock deep mining geotechnical characterization ground control
下载PDF
CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers 被引量:3
10
作者 Songsong Wang Xia Xiong +5 位作者 Peiqiao Liu Qiongzhi Zhang Qian Zhang Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期297-309,共13页
This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi... This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers. 展开更多
关键词 Dual shaft eccentric mixers Non-Newtonian fluid Mixing Laminar flow Computational fluid dynamics
下载PDF
OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL WITH HYSTERESIS 被引量:2
11
作者 Bin CHEN Sergey A.TIMOSHIN 《Acta Mathematica Scientia》 SCIE CSCD 2022年第1期283-298,共16页
This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,a... This paper addresses a nonlinear partial differential control system arising in population dynamics.The system consist of three diffusion equations describing the evolutions of three biological species:prey,predator,and food for the prey or vegetation.The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process.We study the problem of minimization of a given integral cost functional over solutions of the above system.The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable.Some relaxationtype results for the minimization problem are obtained and the existence of a nearly optimal solution is established. 展开更多
关键词 optimal control problem HYSTERESIS biological diffusion models nonconvex integrands nonconvex control constraints
下载PDF
Noise-induced bistable switching dynamics through a potential energy landscape 被引量:2
12
作者 Yuanhong Bi Zhuoqin Yang +1 位作者 Xiangying Meng Qishao Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第2期216-222,共7页
Interlinked positive feedback loops,an important building block of biochemical systems,can induce bistable switching,leading to long-lasting state changes by brief stimuli.In this work,prevalent mutual activation betw... Interlinked positive feedback loops,an important building block of biochemical systems,can induce bistable switching,leading to long-lasting state changes by brief stimuli.In this work,prevalent mutual activation between two species as another positive feedback is added to a generic interlinked positive-feedback-loop model originating from many realistic biological circuits.A stochastic fluctuation of the positive feedback strength is introduced in a bistable interval of the feedback strength,and bistability appears for the moderate feedback strength at a certain noise level.Stability analysis based on the potential energy landscape is further utilized to explore the noise-induced switching behavior of two stable steady states. 展开更多
关键词 Stability Bifurcation Noise Bistable switching Potential energy landscape
下载PDF
Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control 被引量:2
13
作者 Adel Ouannas Amina Aicha Khennaoui +2 位作者 Shaher Momani Viet-Thanh Pham Reyad El-Khazali 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期174-181,共8页
This paper studies the dynamics of a new fractional-order discrete system based on the Caputo-like difference operator.This is the first study to explore a three-dimensional fractional-order discrete chaotic system wi... This paper studies the dynamics of a new fractional-order discrete system based on the Caputo-like difference operator.This is the first study to explore a three-dimensional fractional-order discrete chaotic system without equilibrium.Through phase portrait,bifurcation diagrams,and largest Lyapunov exponents,it is shown that the proposed fractional-order discrete system exhibits a range of different dynamical behaviors.Also,different tests are used to confirm the existence of chaos,such as 0-1 test and C0 complexity.In addition,the quantification of the level of chaos in the new fractional-order discrete system is measured by the approximate entropy technique.Furthermore,based on the fractional linearization method,a one-dimensional controller to stabilize the new system is proposed.Numerical results are presented to validate the findings of the paper. 展开更多
关键词 discrete chaos discrete fractional calculus hidden attractor
下载PDF
Biomineralization and mineralization using microfluidics:A comparison study 被引量:2
14
作者 Yang Xiao Xiang He +3 位作者 Guoliang Ma Chang Zhao Jian Chu Hanlong Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期661-669,共9页
Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials,clog pores,and seal fractures.Although minerals formed b... Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials,clog pores,and seal fractures.Although minerals formed by biomineralization are generally the same as that by mineralization,their mechanical behaviors show a significant discrepancy.This study aims to figure out the differences between biomineralization and mineralization processes by visualizing and tracking the formation of minerals using microfluidics.Both biomineralization and mineralization processes occurred in the Y-shaped sandcontaining microchip that mimics the underground sand layers.Images from different areas in the reaction microchannel of microchips were captured to directly compare the distribution of minerals.Crystal size and numbers from different reaction times were measured to quantify the differences between biomineralization and mineralization processes in terms of crystal kinetics.Results showed that the crystals were precipitated in a faster and more uncontrollable manner in the mineralization process than that in the biomineralization process,given that those two processes presented similar precipitation stages.In addition,a more heterogeneous distribution of crystals was observed during the biomineralization process.The precipitation behaviors were further explained by the classical nucleation crystal growth theory.The present microfluidic tests could advance the understanding of biomineralization and provide new insight into the optimization of biocementation technology. 展开更多
关键词 Microbially induced carbonate precipitation (MICP) Biocementation CRYSTAL Calcium carbonate NUCLEATION
下载PDF
Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial 被引量:1
15
作者 Shuo WANG Anshuai WANG +7 位作者 Yansen WU Xiaofeng LI Yongtao SUN Zhaozhan ZHANG Qian DING G.D.AYALEW Yunxiang MA Qingyu LIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1261-1278,共18页
A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the ban... A novel hollow star-shaped chiral metamaterial(SCM)is proposed by incorporating chiral structural properties into the standard hollow star-shaped metamaterial,exhibiting a wide band gap over 1500 Hz.To broaden the band gap,solid single-phase and two-phase SCMs are designed and simulated,which produce two ultra-wide band gaps(approximately 5116 Hz and 6027 Hz,respectively).The main reason for the formation of the ultra-wide band gap is that the rotational vibration of the concave star of two novel SCMs drains the energy of an elastic wave.The impacts of the concave angle of a single-phase SCM and the resonator radius of a two-phase SCM on the band gaps are studied.Decreasing the concave angle leads to an increase in the width of the widest band gap,and the width of the widest band gap increases as the resonator radius of the two-phase SCM increases.Additionally,the study on elastic wave propagation characteristics involves analyzing frequency dispersion surfaces,wave propagation directions,group velocities,and phase velocities.Ultimately,the analysis focuses on the transmission properties of finite periodic structures.The solid single-phase SCM achieves a maximum vibration attenuation over 800,while the width of the band gap is smaller than that of the two-phase SCM.Both metamaterials exhibit high vibration attenuation capabilities,which can be used in wideband vibration reduction to satisfy the requirement of ultra-wide frequencies. 展开更多
关键词 METAMATERIAL ultra-wide band gap wave propagation vibration suppression
下载PDF
Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel 被引量:1
16
作者 Qing Ai Hao Tian +4 位作者 Hui Wang Qing Lang Xingchun Huang Xinghong Jiang Qiang Jing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1797-1827,共31页
Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient... Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance. 展开更多
关键词 Anomaly detection dynamic predictive model structural health monitoring immersed tunnel LSTM ARIMA
下载PDF
Characteristics of aerodynamic force and flow structure behind single box girder under isolated slit control
17
作者 CHEN Guan-bin CHENWen-li 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2542-2557,共16页
An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge w... An isolated slit was placed in a single box girder to obtain passive leading-edge suction and trailing-edge jet flow to control the unsteady aerodynamic force and modify the flow structure.The Great Belt East Bridge was used as a physical model at a geometric scale of 1:125.Wind tunnel experiments were conducted at an incoming airflow speed of 10 m/s,and the Reynolds number was calculated as 2.3×104 using the test model height and wind speed.The surface pressure distribution was measured,and the aerodynamic force acting on the test model with and without the isolated slit was calculated by integrating the pressure result.It was found that the control using an isolated slit can dramatically decrease the fluctuating surface pressure distribution and aerodynamic force.An analysis on the power spectral density of the lift force revealed that the isolated slit accelerated vortex shedding.Moreover,high-speed particle image velocimetry was used to investigate the wake flow structure behind the test model.A vortex separated from the upper surface was pushed to a lower location and the wake flow structure was modified by the isolated slit.A proper orthogonal decomposition(POD)of the flow field showed that the first two POD modes in the controlled case contributed less energy than those in the uncontrolled case,indicating that more energy was transferred to higher modes,and small-scale vortices had more energy.A secondary instability structure was found in the wake flow for a nondimensional jet momentum coefficient J of 0.0667. 展开更多
关键词 single box girder isolated slit aerodynamic force proper orthogonal decomposition(POD)mode
下载PDF
Model Identification and Control of Electromagnetic Actuation in Continuous Casting Process With Improved Quality
18
作者 Isabela Birs Cristina Muresan +1 位作者 Dana Copot Clara Ionescu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期203-215,共13页
This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from non-Newtonian dynamics are herein used to indicate the natu... This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from non-Newtonian dynamics are herein used to indicate the natural convergence of distributed parameter systems to fractional order transfer function models. Data driven identification from a real continuous casting line is used to identify model of the electromagnetic actuator device to control flow velocity of liquid steel. To ensure product specifications, a fractional order control is designed and validated on the system. A projection of the closed loop performance onto the quality assessment at end production line is also given in this paper. 展开更多
关键词 Electromagnetic actuator fractional order control fractional order system model non-Newtonian material
下载PDF
Physical and numerical investigations of target stratum selection for ground hydraulic fracturing of multiple hard roofs
19
作者 Binwei Xia Yanmin Zhou +2 位作者 Xingguo Zhang Lei Zhou Zikun Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期699-712,共14页
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ... Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum. 展开更多
关键词 Target stratum selection Ground hydraulic fracturing Hard roof control Fracture network Material point method
下载PDF
Potential sliding zone recognition method for the slow-moving landslide based on the Hurst exponent
20
作者 Haiqing Yang Lili Qu +3 位作者 Lichuan Chen Kanglei Song Yong Yang Zhenxing Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4105-4124,共20页
The abrupt occurrence of the Zhongbao landslide is totally unexpected,resulting in the destruction of local infrastructure and river blockage.To review the deformation history of the Zhongbao landslide and prevent the... The abrupt occurrence of the Zhongbao landslide is totally unexpected,resulting in the destruction of local infrastructure and river blockage.To review the deformation history of the Zhongbao landslide and prevent the threat of secondary disasters,the small baseline subsets(SBAS)technology is applied to process 59 synthetic aperture radar(SAR)images captured from Sentinel-1A satellite.Firstly,the time series deformation of the Zhongbao landslide along the radar line of sight(LOS)direction is calculated by SBAS technology.Then,the projection transformation is conducted to determine the slope displacement.Furthermore,the Hurst exponent of the surface deformation along the two directions is calculated to quantify the hidden deformation development trend and identify the unstable deformation areas.Given the suddenness of the Zhongbao landslide failure,the multi-temporal interferometric synthetic aperture radar(InSAR)technology is the ideal tool to obtain the surface deformation history without any monitoring equipment.The obtained deformation process indicates that the Zhongbao landslide is generally stable with slow creep deformation before failure.Moreover,the Hurst exponent distribution on the landslide surface in different time stages reveals more deformation evolution information of the Zhongbao landslide,with partially unstable areas detected before the failure.Two potential unstable areas after the Zhongbao landslide disaster are revealed by the Hurst exponent distribution and verified by the GNSS monitoring results and deformation mechanism discussion.The method combining SBASInSAR and Hurst exponent proposed in this study could help prevent and control secondary landslide disasters. 展开更多
关键词 Zhongbao landslide Interferometric synthetic aperture radar (InSAR)technology Hurst exponent Deformation process Unstable area identification
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部