期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Porous Calcium Phosphate Ceramic Scaffolds for Tissue Engineering 被引量:5
1
作者 L Di Silvio N Gurav +1 位作者 J Merry R Sambrook 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期13-15,共3页
This study examined the biological response of two porous calcium phosphate ceramics, hydroxyapntite ( HA ) and hydroxyapaptite/β-tricalcium phosphate ( HA/β- TCP ) scaffolds. Three different cell types , a huma... This study examined the biological response of two porous calcium phosphate ceramics, hydroxyapntite ( HA ) and hydroxyapaptite/β-tricalcium phosphate ( HA/β- TCP ) scaffolds. Three different cell types , a human osteoblastic cell line ( HOS ) , primary human osteoblasts (HOB) and human mesenehymal stem cells (MSCs), were used to examine biocompatibility and osteoinductive capacity. The experimental results showed both materials were highly biocompatible and proliferation was significantly greater on pure HA ( P 〈 0.01 ), with a peak in proliferation at day 7. Protein levels were significantly higher ( P 〈 0.05) than the control Thermanox( TMX ( tm) ) for both test materials. Osteoinduction of MSCs was observed on both test materials, with cells seeded on HA/ β-TCP showing greater alkaline phosphatase activity compared to HA alone, indicating an enhancement in osteoinductive property. Both materials show good potential for use as tissue engineered scaffolds. 展开更多
关键词 calcium phosphate ceramics mesenchymal stem cells bone graft OSTEOINDUCTION
下载PDF
Optimization Design for Fixed Table of Gantry Machining Center Based on Sensitivity and Topology Analyses 被引量:3
2
作者 郑彬 殷国富 +2 位作者 黄辉 陈强 方辉 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期263-268,共6页
In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of th... In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure. 展开更多
关键词 集团公司 财务集中管理 对策
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部