The architect has always been interested in the social and cultural dimensions while creating architecture for people to last,with the help of building science and technology.Science could solve some problems,but is y...The architect has always been interested in the social and cultural dimensions while creating architecture for people to last,with the help of building science and technology.Science could solve some problems,but is yet to solve many of the problems of urbanization in human history.Perhaps many of the problems can only be solved with careful understanding of human behavior,social intercourse,and economics in relation to the urban environments and organizations,and the natural environment simultaneously.There seemed to be a divide between the way an engineer and an architect think and practice in making a building and a piece of architecture,where the former is highly mathematical,and the latter deals with cultural poetics and a whole range of social and technical issues of which the physics of the environment is but one dimension(Bay and Ong 2006).It may appear natural in this age of environmental crisis and rapid urban development in many cities that the current Ecologically Sustainable Design(ESD)system,which is mainly based on science of the physical world,would be readily accepted by the architect in practice and education.Many of the current ESD guidelines can contribute to the avoidance of a further decay of the earth,thus preventing droughts and floods,etc.,and hope to maintain the status quo of the environment for all the“business as usual”social-economic activities.With more world leaders of the developed world agreeing in principle on the need to address climate change,perhaps a lot more will be done based on the engineering models for ecologically friendly planning,commerce,industry,and design.There could be a cognitive bias3 of overconfidence and systemic error that the predominantly engineering focus to keep climate change at bay will solve the problem of sustainability in various parts of the world.The current limited concept of“ecological”or the“green”design does contribute to sustainability,but is quite limited and not the whole picture of sustainability.The concept of sustainability involves the dynamic and complex balance of environmental(man-made and natural),economic and social dimensions,from many earlier sources including the theory of the Third Ecology(Chermayeff and Tzonis 1971)about social ecology directly related to the man-made urban fabric,and recently,the much accepted pervasive framework of the Brundtland Commission Report 1987:Our Common Future,which included more discussions about the interrelatedness with economic equity and the natural environment.Foremost and ultimately it is about promoting and ensuring social quality of living now and sustaining that into the future,for all nations,the rich and the poor,through solving the matrix of social,economic,and environmental problems.From the perspective of the theory and practice of architecture,this paper discusses the following issues:1.Belief in science,disenchantment,symbol of failure of modern architecture-Pruitt Igoe;2.An anti-thesis to Pruitt Igoe-Bedok Court;3.The cultural concerns and preparametric design thinking process of the architect;4.Architecture,social science,cultural value,social capital,behavior,and ESD;5.A Fourth Ecology,multi-disciplinary research by architects,social scientists,and engineers.展开更多
Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formula...Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formulating environmental management strategies yet little attention to this region. In this study, we established an ecological risk assessment index system based on 30 evaluation indices in the categories of hydrometeorology, ecological environment, ground surface disturbance, and society and economy for the Gannan Plateau. An entropy method was used to calculate an index weight,and subsequently the matter-element method was used together with extension theory to establish a matter-element extension model of ecological risk. We assessed the ecological risk in this region by calculating the degree of association between index layer, system layer and target layer, and the cumulative ecological risk index. The degrees of ecological risk for the counties of the region were determined by using Arc GIS which would represent a spatial heterogeneity of the risk grade in production. Our results showed that the areas of high ecological risk were in Zhouqu County and Zhuoni County, and others were of low risk(Hezuo City, Diebu County, Xiahe County and Lintan County) or intermediate risk(Maqu County). The results of the assessment were in accord with the actual observed situation. Thus, our ecological risk assessment index system is appropriate for this region and suggests that high risk counties need a priori ecological protection. Such research could provide a technological support which would potentially prevent or reduce disasters by establishing an ecological barrier to promote the sustainable development of Gannan Plateau.展开更多
<span style="font-family:Verdana;">Riparian forests ecosystems play significant role in biodiversity conservation and provision of ecosystem goods and services which support local livelihoods. However,...<span style="font-family:Verdana;">Riparian forests ecosystems play significant role in biodiversity conservation and provision of ecosystem goods and services which support local livelihoods. However, riparian ecosystems are threatened by degradation attributed to anthropogenic activities. Understanding the interaction between anthropogenic activities and socio-economic factors, and their associated impact on riparian degradation is essential for designing appropriate management strategies for these ecosystems. This study assessed the socio-economic factors that drive degradation and their implication on conservation of River Lumi riparian ecosystem. Semi-structured questionnaires, Focus Group Discussion (FGDs) and key informant interviews were used to collect the data. The findings indicate that crop farming and livestock production were the main sources of livelihood practiced by 84% and 70% of the households respectively. Consequently, agricultural intensification resulting from increased demand for agricultural commodities (33%), over-grazing coupled with influx of livestock from private ranches and neighbouring pastoralist Maasai community (20%), and deforestation fuelled by population increase (17%) were the main drivers of degradation in River Lumi riparian ecosystem. The findings indicate that about 91% of the adjacent communities are dependent on River Lumi for their sustenance and their livelihoods will be affected by continued degradation of the riparian ecosystem;thus there is need for development of appropriate management strategies including sustainable livelihood systems to conserve River Lumi riparian ecosystem.</span>展开更多
The purpose of the comprehensive benefit evaluation of the existing building energy saving renovation project is to promote the healthy development of the energy saving reconstruction. Therefore, it is necessary to re...The purpose of the comprehensive benefit evaluation of the existing building energy saving renovation project is to promote the healthy development of the energy saving reconstruction. Therefore, it is necessary to reflect the value and function of incentive and restraint. The concrete embodiment is that: improving energy saving standard renovation of existing buildings, promoting the construction of energy efficiency labeling system, and strengthening the construction of government supervision system by the comprehensive benefit evaluation.展开更多
The development of existing building energy saving reconstruction market depends on the interaction among service market, capital market and technology market. Analysis of the characteristics of both building energy-s...The development of existing building energy saving reconstruction market depends on the interaction among service market, capital market and technology market. Analysis of the characteristics of both building energy-saving service market, capital market and technology market, and analysis on the role of existing building energy saving reconstruction market development in energy conservation and emission reduction development strategy, energy-saving transformation policy implementation and promotion of other industries landing, will be conducive to energy-saving renovation of existing buildings market cultivation and development.展开更多
Riparian forests minimize impacts of land degradation on stream ecosystems and provide direct and indirect benefits to people. However, these ecosystems are threatened by degradation and deforestation attributed to la...Riparian forests minimize impacts of land degradation on stream ecosystems and provide direct and indirect benefits to people. However, these ecosystems are threatened by degradation and deforestation attributed to land use changes. River Lumi riparian ecosystem in Taita Taveta County in Kenya has experienced rapid and extensive land use changes over the past three decades in response to economic, institutional and demographic factors. There is growing concern of riparian degradation attributed to land use change with far reaching implications on local livelihoods. A study was conducted to examine the patterns </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of land use and land cover change</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> along River Lumi riparian ecosystem between 1987 and 2019. The aim of the study was to ascertain the impacts of land use and land cover change on local livelihoods. Landsat images were used to assess land use and land cover change while socio-economic data was collected from 353 households in Njukini, Chala and Mboghoni located in the upper, middle and lower sections of River Lumi ecosystem respectively. Research evidence authenticated that the area under farmlands, settlement and water body increased by 20.5%, 112.1% and 2.3% respectively between 1987 and 2019 while area under forest patches, grazing land and riverine vegetation decreased by 52.7%, 3.0%, and 36.6% respectively. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The increase in population in surrounding areas coupled with encroachment of the riparian areas for crop farming and livestock grazing resulted to loss of riparian forest patches/vegetation and associated biodiversity with negative implications on household livelihoods. The implication of these results is the need for land use regulations and management interventions at the County level to arrest further encroachment of River Lumi riparian ecosystem and consequent loss of biodiversity and livelihoods.展开更多
Exhaust hot water (EHW) is widely used for various industrial processes. However, the excess heat carried by EHW is typically ignored and discharged into the environment, resulting in heat loss and heat pollution. A...Exhaust hot water (EHW) is widely used for various industrial processes. However, the excess heat carried by EHW is typically ignored and discharged into the environment, resulting in heat loss and heat pollution. An organic Rankine cycle (ORC) is an attractive technology to recycle heat from low-temperature energy carriers. Herein, ORC was used to recycle the heat carried by EHW. To investigate the energy and exergy recovery effects of EHW, a mathematical model was developed and a parametric study was conducted. The energy efficiency and exergy efficiency of the EHW-driven ORC system were modeled with R245fa, Rl13 and R123 as the working fluids. The results demonstrate that the EHW and evaporation temperatures have significant effects on the energy and exergy efficiencies of the EHW-driven ORC system. Under given EHW conditions, an optimum evaporation temperature exists corresponding to the highest exergy efficiency. To further use the low-temperature EHW, a configuration retrofitted to the ORC by combining with flash evaporation (FE) was conducted. For an EHW at 120 ~C and 0.2 MPa, the maximum exergy efficiency of the FE-ORC system is 45.91% at a flash pressure of 0.088 MPa. The FE-ORC performs better in exergy efficiency than the basic FE and basic EHW-driven ORC.展开更多
Efficient bifunctional oxygen electrocatalysts for ORR and OER are fundamental to the development of high performance metal-air batteries.Herein,a facile cost-efficient two-step pyrolysis strategy for the fabrication ...Efficient bifunctional oxygen electrocatalysts for ORR and OER are fundamental to the development of high performance metal-air batteries.Herein,a facile cost-efficient two-step pyrolysis strategy for the fabrication of a bifunctional oxygen electrocatalyst has been proposed.The efficient non-preciousmetal-based electrocatalyst,Fe/Fe_(3)C@Fe-N_(x)-C consists of highly curved onion-like carbon shells that encapsulate Fe/Fe_(3)C nanoparticles,distributed on an extensively porous graphitic carbon aerogel.The obtained Fe/Fe_(3)C@Fe-N_(x)-C aerogel exhibited superb electrochemical activity,excellent durability,and high methanol tolerance.The experimental results indicated that the assembly of onion-like carbon shells with encapsulated Fe/Fe_(3)C yielded highly curved carbon surfaces with abundant Fe-Nxactive sites,a porous structure,and enhanced electrocatalytic activity towards ORR and OER,hence displaying promising potential for application as an air cathode in rechargeable Zn-air batteries.The constructed Zn-air battery possessed an exceptional peak power density of~147 mW cm^(-2),outstanding cycling stability(200 cycles,1 h per cycle),and a small voltage gap of 0.87 V.This study offers valuable insights regarding the construction of low-cost and highly active bifunctional oxygen electrocatalysts for efficient air batteries.展开更多
Change detection of land-cover to recommend the future directions of land-use is indispensable for sustainable development and the proper utilization of land resources. In this research, unsupervised classification ma...Change detection of land-cover to recommend the future directions of land-use is indispensable for sustainable development and the proper utilization of land resources. In this research, unsupervised classification maps produced using images of Landsat 8 OLI from 2013 until 2021 (with a 4-year interval) reveal important land-cover changes, along with their drivers, in Kapasia, Bangladesh. Overall, a substantial increase in paddy (24.7% to 27.2%) and urban (3.5% to 10.1%) and a decrease in homestead (67.5% to 59.3%) and forest (4.2% to 3.4%) were observed within the time interval. To direct the land-use towards long-term biodiversity and sustainability of the region, it is important to implement types of agroforestry systems as the observed decrease in homestead and forest areas are alarming. Agroforestry practices will not only have a positive environmental impact but can help diversify food systems, increase economic return and optimize natural resource use.展开更多
The objective of this study is to characterize and assess the risk of collapse of woody plant formations in the Fathala forest. In recent years, this forest has suffered a sharp reduction in its plant cover to the poi...The objective of this study is to characterize and assess the risk of collapse of woody plant formations in the Fathala forest. In recent years, this forest has suffered a sharp reduction in its plant cover to the point of compromising the survival of populations of certain animal species such as the Red colobuses. The methods used are respectively constituted by the transect method, the dendrometric statements method and that of establishing the red list of ecosystems of the IUCN. The specific richness comprises 56 species divided into 47 genera and 22 families. The density is higher in the unfenced area (369 ind/ha in clear forest and 53 ind/ha in gallery forest) compared to the fenced area (160 ind/ha in clear forest versus 48 ind/ha in gallery forest). A study of the plant formations shows a strong degradation of the ecosystems passing from a clear and dry Sudanese forest to a wooded savannah. The cover rate in the fenced area is 20% in gallery forests and 25% in clear forests;in the unfenced area, it is 19% and 23% in gallery forests and clear forests, respectively. The application of the IUCN criteria shows an annual rate of collapse is -<span style="font-family:Verdana;">6 ind/ha in gallery forests and </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">4 ind/ha in clear forests. The annual rate of cover collapse would be </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">3.75% and </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2.9% for gallery forests and clear forests, respectively. These results classify the forest in the Critically Endangered category. The main factors responsible for this degradation are, among others, anthropogenic actions and climatic pejoration. These results could constitute a basic tool for undertaking an improvement in the management of this forest, which is a living environment for an animal species.</span>展开更多
Performance analysis during the early design stage can significantly reduce building energy consumption.However,it is difficult to transform computer-aided design(CAD)models into building energy models(BEM)to optimize...Performance analysis during the early design stage can significantly reduce building energy consumption.However,it is difficult to transform computer-aided design(CAD)models into building energy models(BEM)to optimize building performance.The model structures for CAD and BEM are divergent.In this study,geometry transformation methods was implemented in BES tools for the early design stage,including auto space generation(ASG)method based on closed contour recognition(CCR)and space boundary topology calculation method.The program is developed based on modeling tools SketchUp to support the CAD format(like*.stl,*.dwg,*.ifc,etc.).It transforms face-based geometric information into a zone-based tree structure model that meets the geometric requirements of a single-zone BES combined with the other thermal parameter inputs of the elements.In addition,this study provided a space topology calculation method based on a single-zone BEM output.The program was developed based on the SketchUp modeling tool to support additional CAD formats(such as*.stl,*.dwg,*.ifc),which can then be imported and transformed into*.obj.Compared to current methods mostly focused on BIM-BEM transformation,this method can ensure more modeling flexibility.The method was integrated into a performance analysis tool termed MOOSAS and compared with the current version of the transformation program.They were tested on a dataset comprising 36 conceptual models without partitions and six real cases with detailed partitions.It ensures a transformation rate of two times in any bad model condition and costs only 1/5 of the time required to calculate each room compared to the previous version.展开更多
The use of human excrement as fertilizer is a characteristic of traditional Chinese agriculture..The application of excrement from urban residents in agriculture since the Song Dynasty has ensured the cleanliness and ...The use of human excrement as fertilizer is a characteristic of traditional Chinese agriculture..The application of excrement from urban residents in agriculture since the Song Dynasty has ensured the cleanliness and hygiene of ancientChinesecities.As early as the Ming Dynasty,the Chinese people defined the principle of fertilizing fields with human excrement from the perspective of materialcirculation.The concept Peri-URban ecosystems(PURE)provides inspiration forurban-rural symbiosis regarding circulareconomy.The use of human excrement in fertilization is a major attribute differentiating the Chinese traditional agriculture from the agriculture in other regions around the world.Despite the fact that the exact record showing that human excrement was used as fertilizer in China emerged in the Western Han Dynasty(B.C.202-A.D.8),such records did not become prevalent until the Southern Song Dynasty(A.D.1127-1279).In the Ming and Qing eras(A.D.1368-1912),human excrement was even considered"top-class fertilizerand servedas themost essential fertilizerin farmland fertilization.The importance of human excrement in the Ming and Qing was mainly reflected by farmers'purchase of human excrement from urban areas.As fertilization practices became increasingly popular during the period,men of letters built a localized theoretical system centering on human excrement.Although the use of human excrement had both positive and negative impacts on public health and the ecological environment,the positive overshadowed the negativeas a whole.Today,it is worth pondering on how the utilization of human excrement as an agricultural resource can be improved so that a material cycle system can be rebuilt to re-connect the urban and rural areas.展开更多
This study analyzes cities in China at the prefecture level and above to calculate indices for“urban economic efficiency”(the relationship between input factors and output)and“urbanization economic efficiency”(the...This study analyzes cities in China at the prefecture level and above to calculate indices for“urban economic efficiency”(the relationship between input factors and output)and“urbanization economic efficiency”(the relationship between newly increased output and increased economic input),based on the Stochastic Frontier Analysis(SFA)method.We compare and analyze the factors influencing change and their spatial distributions.The results show that capital and labor rather than urban land could effectively improve urban and urbanization economic efficiency.And,although the proportion of wages to GDP has a significant negative impact on urban economic efficiency,for social equity and stability,the proportion should be increased;if appropriate,it would not significantly reduce urbanization economic efficiency.Additionally,population density,population urbanization rate,and government fiscal expenditure significantly positively impact urban and urbanization economic efficiency.However,we also found that increases in the degree of industrial structure deviation and urban landscape fragmentation are harmful to urbanization economic efficiency.In terms of spatial distribution,the urbanization economic efficiency of most of China's northeastern and eastern coastal areas is significantly lower than that of other regions;at the same time,the urban economic efficiency of most of these cities has been decreasing,especially in the northeast,which warrants greater policy attention.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
At present,Ru dopants mainly enhance electrocatalytic performance by inducing strain,vacancy,local electron difference,and synergy.Surprisingly,this work innovatively proposes that trace Ru atoms induce dual-reconstru...At present,Ru dopants mainly enhance electrocatalytic performance by inducing strain,vacancy,local electron difference,and synergy.Surprisingly,this work innovatively proposes that trace Ru atoms induce dual-reconstruction of phosphide by regulating the electronic configuration and proportion of Co–P/Co–O species,and ultimately activate superb electrocatalytic performance.Specifically,Ru-CoFeP@C/nickel foam(NF)is reconstructed to generate hydrophilic Co(OH)_(2)nanosheets during the hydrogen evolution reaction(HER)process,further accelerating the alkaline HER kinetics of phosphide.And the as-formed CoOOH during the oxygen evolution reaction(OER)process directly accelerates the oxygen overflow efficiency.As expected,the overpotential at 100 mA·cm^(−2)(η100)values of the reconstructed Ru-CoFeP@C/NF are 0.104 and 0.257 V for HER and OER,which are greatly lower than that of Pt/C-NF and RuO_(2)-NF benchmarks,respectively.This work provides guidance for the construction of highperformance catalysts for HER and OER dual reconstruction.This work provides a new idea for the optimization of catalyst structure and electrocatalytic performance.展开更多
文摘The architect has always been interested in the social and cultural dimensions while creating architecture for people to last,with the help of building science and technology.Science could solve some problems,but is yet to solve many of the problems of urbanization in human history.Perhaps many of the problems can only be solved with careful understanding of human behavior,social intercourse,and economics in relation to the urban environments and organizations,and the natural environment simultaneously.There seemed to be a divide between the way an engineer and an architect think and practice in making a building and a piece of architecture,where the former is highly mathematical,and the latter deals with cultural poetics and a whole range of social and technical issues of which the physics of the environment is but one dimension(Bay and Ong 2006).It may appear natural in this age of environmental crisis and rapid urban development in many cities that the current Ecologically Sustainable Design(ESD)system,which is mainly based on science of the physical world,would be readily accepted by the architect in practice and education.Many of the current ESD guidelines can contribute to the avoidance of a further decay of the earth,thus preventing droughts and floods,etc.,and hope to maintain the status quo of the environment for all the“business as usual”social-economic activities.With more world leaders of the developed world agreeing in principle on the need to address climate change,perhaps a lot more will be done based on the engineering models for ecologically friendly planning,commerce,industry,and design.There could be a cognitive bias3 of overconfidence and systemic error that the predominantly engineering focus to keep climate change at bay will solve the problem of sustainability in various parts of the world.The current limited concept of“ecological”or the“green”design does contribute to sustainability,but is quite limited and not the whole picture of sustainability.The concept of sustainability involves the dynamic and complex balance of environmental(man-made and natural),economic and social dimensions,from many earlier sources including the theory of the Third Ecology(Chermayeff and Tzonis 1971)about social ecology directly related to the man-made urban fabric,and recently,the much accepted pervasive framework of the Brundtland Commission Report 1987:Our Common Future,which included more discussions about the interrelatedness with economic equity and the natural environment.Foremost and ultimately it is about promoting and ensuring social quality of living now and sustaining that into the future,for all nations,the rich and the poor,through solving the matrix of social,economic,and environmental problems.From the perspective of the theory and practice of architecture,this paper discusses the following issues:1.Belief in science,disenchantment,symbol of failure of modern architecture-Pruitt Igoe;2.An anti-thesis to Pruitt Igoe-Bedok Court;3.The cultural concerns and preparametric design thinking process of the architect;4.Architecture,social science,cultural value,social capital,behavior,and ESD;5.A Fourth Ecology,multi-disciplinary research by architects,social scientists,and engineers.
基金supported by the Soft Science Project of Gansu province(1504ZKCA090-1)the National Natural Science Foundation of china(grant nos.41671516,41701623,51369003)+2 种基金the Foundation for Excellent Youth Scholars of NIEER,CAS,National Natural Science Foundation of China(Grant No.41661144046)supported by the Special Foundation for Gansu Province International Scientific Cooperation(1604WKCA002)the Fundamental Research Funds for the Central Universities(lzujbky-2015-K10,lzujbky-2016-862516,lzujbky-2017-it90)
文摘Desertification, soil salinization and grassland degradation are the major environmental hazards faced by the Gannan Plateau, northeastern Tibetan Plateau. Ecological risk assessment plays an important role in formulating environmental management strategies yet little attention to this region. In this study, we established an ecological risk assessment index system based on 30 evaluation indices in the categories of hydrometeorology, ecological environment, ground surface disturbance, and society and economy for the Gannan Plateau. An entropy method was used to calculate an index weight,and subsequently the matter-element method was used together with extension theory to establish a matter-element extension model of ecological risk. We assessed the ecological risk in this region by calculating the degree of association between index layer, system layer and target layer, and the cumulative ecological risk index. The degrees of ecological risk for the counties of the region were determined by using Arc GIS which would represent a spatial heterogeneity of the risk grade in production. Our results showed that the areas of high ecological risk were in Zhouqu County and Zhuoni County, and others were of low risk(Hezuo City, Diebu County, Xiahe County and Lintan County) or intermediate risk(Maqu County). The results of the assessment were in accord with the actual observed situation. Thus, our ecological risk assessment index system is appropriate for this region and suggests that high risk counties need a priori ecological protection. Such research could provide a technological support which would potentially prevent or reduce disasters by establishing an ecological barrier to promote the sustainable development of Gannan Plateau.
文摘<span style="font-family:Verdana;">Riparian forests ecosystems play significant role in biodiversity conservation and provision of ecosystem goods and services which support local livelihoods. However, riparian ecosystems are threatened by degradation attributed to anthropogenic activities. Understanding the interaction between anthropogenic activities and socio-economic factors, and their associated impact on riparian degradation is essential for designing appropriate management strategies for these ecosystems. This study assessed the socio-economic factors that drive degradation and their implication on conservation of River Lumi riparian ecosystem. Semi-structured questionnaires, Focus Group Discussion (FGDs) and key informant interviews were used to collect the data. The findings indicate that crop farming and livestock production were the main sources of livelihood practiced by 84% and 70% of the households respectively. Consequently, agricultural intensification resulting from increased demand for agricultural commodities (33%), over-grazing coupled with influx of livestock from private ranches and neighbouring pastoralist Maasai community (20%), and deforestation fuelled by population increase (17%) were the main drivers of degradation in River Lumi riparian ecosystem. The findings indicate that about 91% of the adjacent communities are dependent on River Lumi for their sustenance and their livelihoods will be affected by continued degradation of the riparian ecosystem;thus there is need for development of appropriate management strategies including sustainable livelihood systems to conserve River Lumi riparian ecosystem.</span>
基金supported by Nature Science Foundation of China (Grant No. 71171141)Soft Science Research Project of MOE (Grant No. 2013-R1-14)Social Science Planning Project in Tianjin City (Grant No. TJGLHQ1403)
文摘The purpose of the comprehensive benefit evaluation of the existing building energy saving renovation project is to promote the healthy development of the energy saving reconstruction. Therefore, it is necessary to reflect the value and function of incentive and restraint. The concrete embodiment is that: improving energy saving standard renovation of existing buildings, promoting the construction of energy efficiency labeling system, and strengthening the construction of government supervision system by the comprehensive benefit evaluation.
基金supported by the National Natural Science Foundation of China (Grant No. 71573188)the Soft Science Research Project of Ministry of Housing and Urban - Rural Development (Grant No. 2013-R1-14)Tianjin Social Sciences Planning Post-funded Projects (Grant No. TJGLHQ1403)
文摘The development of existing building energy saving reconstruction market depends on the interaction among service market, capital market and technology market. Analysis of the characteristics of both building energy-saving service market, capital market and technology market, and analysis on the role of existing building energy saving reconstruction market development in energy conservation and emission reduction development strategy, energy-saving transformation policy implementation and promotion of other industries landing, will be conducive to energy-saving renovation of existing buildings market cultivation and development.
文摘Riparian forests minimize impacts of land degradation on stream ecosystems and provide direct and indirect benefits to people. However, these ecosystems are threatened by degradation and deforestation attributed to land use changes. River Lumi riparian ecosystem in Taita Taveta County in Kenya has experienced rapid and extensive land use changes over the past three decades in response to economic, institutional and demographic factors. There is growing concern of riparian degradation attributed to land use change with far reaching implications on local livelihoods. A study was conducted to examine the patterns </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of land use and land cover change</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> along River Lumi riparian ecosystem between 1987 and 2019. The aim of the study was to ascertain the impacts of land use and land cover change on local livelihoods. Landsat images were used to assess land use and land cover change while socio-economic data was collected from 353 households in Njukini, Chala and Mboghoni located in the upper, middle and lower sections of River Lumi ecosystem respectively. Research evidence authenticated that the area under farmlands, settlement and water body increased by 20.5%, 112.1% and 2.3% respectively between 1987 and 2019 while area under forest patches, grazing land and riverine vegetation decreased by 52.7%, 3.0%, and 36.6% respectively. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The increase in population in surrounding areas coupled with encroachment of the riparian areas for crop farming and livestock grazing resulted to loss of riparian forest patches/vegetation and associated biodiversity with negative implications on household livelihoods. The implication of these results is the need for land use regulations and management interventions at the County level to arrest further encroachment of River Lumi riparian ecosystem and consequent loss of biodiversity and livelihoods.
基金Projects(51704069, 51734004, 71403175) supported by the National Natural Science Foundation of China Project(N162504011) supported by the Fundamental Research Funds for the Central Universities, China
文摘Exhaust hot water (EHW) is widely used for various industrial processes. However, the excess heat carried by EHW is typically ignored and discharged into the environment, resulting in heat loss and heat pollution. An organic Rankine cycle (ORC) is an attractive technology to recycle heat from low-temperature energy carriers. Herein, ORC was used to recycle the heat carried by EHW. To investigate the energy and exergy recovery effects of EHW, a mathematical model was developed and a parametric study was conducted. The energy efficiency and exergy efficiency of the EHW-driven ORC system were modeled with R245fa, Rl13 and R123 as the working fluids. The results demonstrate that the EHW and evaporation temperatures have significant effects on the energy and exergy efficiencies of the EHW-driven ORC system. Under given EHW conditions, an optimum evaporation temperature exists corresponding to the highest exergy efficiency. To further use the low-temperature EHW, a configuration retrofitted to the ORC by combining with flash evaporation (FE) was conducted. For an EHW at 120 ~C and 0.2 MPa, the maximum exergy efficiency of the FE-ORC system is 45.91% at a flash pressure of 0.088 MPa. The FE-ORC performs better in exergy efficiency than the basic FE and basic EHW-driven ORC.
基金supported financially by the National Natural Science Foundation of China,China(Grant No.51702180,51572136,91963113,21703116,51372127,51873096)The Scientific and Technical Development Project of Qingdao,China(Grant No.18-2-2-52-jch)+1 种基金The Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and TechnologyThe Natural Science Foundation of Hebei Province(B2019204009)。
文摘Efficient bifunctional oxygen electrocatalysts for ORR and OER are fundamental to the development of high performance metal-air batteries.Herein,a facile cost-efficient two-step pyrolysis strategy for the fabrication of a bifunctional oxygen electrocatalyst has been proposed.The efficient non-preciousmetal-based electrocatalyst,Fe/Fe_(3)C@Fe-N_(x)-C consists of highly curved onion-like carbon shells that encapsulate Fe/Fe_(3)C nanoparticles,distributed on an extensively porous graphitic carbon aerogel.The obtained Fe/Fe_(3)C@Fe-N_(x)-C aerogel exhibited superb electrochemical activity,excellent durability,and high methanol tolerance.The experimental results indicated that the assembly of onion-like carbon shells with encapsulated Fe/Fe_(3)C yielded highly curved carbon surfaces with abundant Fe-Nxactive sites,a porous structure,and enhanced electrocatalytic activity towards ORR and OER,hence displaying promising potential for application as an air cathode in rechargeable Zn-air batteries.The constructed Zn-air battery possessed an exceptional peak power density of~147 mW cm^(-2),outstanding cycling stability(200 cycles,1 h per cycle),and a small voltage gap of 0.87 V.This study offers valuable insights regarding the construction of low-cost and highly active bifunctional oxygen electrocatalysts for efficient air batteries.
文摘Change detection of land-cover to recommend the future directions of land-use is indispensable for sustainable development and the proper utilization of land resources. In this research, unsupervised classification maps produced using images of Landsat 8 OLI from 2013 until 2021 (with a 4-year interval) reveal important land-cover changes, along with their drivers, in Kapasia, Bangladesh. Overall, a substantial increase in paddy (24.7% to 27.2%) and urban (3.5% to 10.1%) and a decrease in homestead (67.5% to 59.3%) and forest (4.2% to 3.4%) were observed within the time interval. To direct the land-use towards long-term biodiversity and sustainability of the region, it is important to implement types of agroforestry systems as the observed decrease in homestead and forest areas are alarming. Agroforestry practices will not only have a positive environmental impact but can help diversify food systems, increase economic return and optimize natural resource use.
文摘The objective of this study is to characterize and assess the risk of collapse of woody plant formations in the Fathala forest. In recent years, this forest has suffered a sharp reduction in its plant cover to the point of compromising the survival of populations of certain animal species such as the Red colobuses. The methods used are respectively constituted by the transect method, the dendrometric statements method and that of establishing the red list of ecosystems of the IUCN. The specific richness comprises 56 species divided into 47 genera and 22 families. The density is higher in the unfenced area (369 ind/ha in clear forest and 53 ind/ha in gallery forest) compared to the fenced area (160 ind/ha in clear forest versus 48 ind/ha in gallery forest). A study of the plant formations shows a strong degradation of the ecosystems passing from a clear and dry Sudanese forest to a wooded savannah. The cover rate in the fenced area is 20% in gallery forests and 25% in clear forests;in the unfenced area, it is 19% and 23% in gallery forests and clear forests, respectively. The application of the IUCN criteria shows an annual rate of collapse is -<span style="font-family:Verdana;">6 ind/ha in gallery forests and </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">4 ind/ha in clear forests. The annual rate of cover collapse would be </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">3.75% and </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2.9% for gallery forests and clear forests, respectively. These results classify the forest in the Critically Endangered category. The main factors responsible for this degradation are, among others, anthropogenic actions and climatic pejoration. These results could constitute a basic tool for undertaking an improvement in the management of this forest, which is a living environment for an animal species.</span>
基金We would like to thank the National Science Foundation of China(Grant No.52130803)for funding this study.
文摘Performance analysis during the early design stage can significantly reduce building energy consumption.However,it is difficult to transform computer-aided design(CAD)models into building energy models(BEM)to optimize building performance.The model structures for CAD and BEM are divergent.In this study,geometry transformation methods was implemented in BES tools for the early design stage,including auto space generation(ASG)method based on closed contour recognition(CCR)and space boundary topology calculation method.The program is developed based on modeling tools SketchUp to support the CAD format(like*.stl,*.dwg,*.ifc,etc.).It transforms face-based geometric information into a zone-based tree structure model that meets the geometric requirements of a single-zone BES combined with the other thermal parameter inputs of the elements.In addition,this study provided a space topology calculation method based on a single-zone BEM output.The program was developed based on the SketchUp modeling tool to support additional CAD formats(such as*.stl,*.dwg,*.ifc),which can then be imported and transformed into*.obj.Compared to current methods mostly focused on BIM-BEM transformation,this method can ensure more modeling flexibility.The method was integrated into a performance analysis tool termed MOOSAS and compared with the current version of the transformation program.They were tested on a dataset comprising 36 conceptual models without partitions and six real cases with detailed partitions.It ensures a transformation rate of two times in any bad model condition and costs only 1/5 of the time required to calculate each room compared to the previous version.
基金supported by the Youth Innovation Promotion Association,CAS(Grant No.2020157).
文摘The use of human excrement as fertilizer is a characteristic of traditional Chinese agriculture..The application of excrement from urban residents in agriculture since the Song Dynasty has ensured the cleanliness and hygiene of ancientChinesecities.As early as the Ming Dynasty,the Chinese people defined the principle of fertilizing fields with human excrement from the perspective of materialcirculation.The concept Peri-URban ecosystems(PURE)provides inspiration forurban-rural symbiosis regarding circulareconomy.The use of human excrement in fertilization is a major attribute differentiating the Chinese traditional agriculture from the agriculture in other regions around the world.Despite the fact that the exact record showing that human excrement was used as fertilizer in China emerged in the Western Han Dynasty(B.C.202-A.D.8),such records did not become prevalent until the Southern Song Dynasty(A.D.1127-1279).In the Ming and Qing eras(A.D.1368-1912),human excrement was even considered"top-class fertilizerand servedas themost essential fertilizerin farmland fertilization.The importance of human excrement in the Ming and Qing was mainly reflected by farmers'purchase of human excrement from urban areas.As fertilization practices became increasingly popular during the period,men of letters built a localized theoretical system centering on human excrement.Although the use of human excrement had both positive and negative impacts on public health and the ecological environment,the positive overshadowed the negativeas a whole.Today,it is worth pondering on how the utilization of human excrement as an agricultural resource can be improved so that a material cycle system can be rebuilt to re-connect the urban and rural areas.
基金Key Project of National Natural Science Foundation of China,No.71533005The Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA19050504。
文摘This study analyzes cities in China at the prefecture level and above to calculate indices for“urban economic efficiency”(the relationship between input factors and output)and“urbanization economic efficiency”(the relationship between newly increased output and increased economic input),based on the Stochastic Frontier Analysis(SFA)method.We compare and analyze the factors influencing change and their spatial distributions.The results show that capital and labor rather than urban land could effectively improve urban and urbanization economic efficiency.And,although the proportion of wages to GDP has a significant negative impact on urban economic efficiency,for social equity and stability,the proportion should be increased;if appropriate,it would not significantly reduce urbanization economic efficiency.Additionally,population density,population urbanization rate,and government fiscal expenditure significantly positively impact urban and urbanization economic efficiency.However,we also found that increases in the degree of industrial structure deviation and urban landscape fragmentation are harmful to urbanization economic efficiency.In terms of spatial distribution,the urbanization economic efficiency of most of China's northeastern and eastern coastal areas is significantly lower than that of other regions;at the same time,the urban economic efficiency of most of these cities has been decreasing,especially in the northeast,which warrants greater policy attention.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金supported by the National Natural Science Foundation of China(Nos.52072197 and 21971132)the 111 Project of China(No.D20017)+5 种基金Outstanding Youth Foundation of Shandong Province,China(No.ZR2019JQ14)Natural Science Foundation of Shandong Province,China(No.ZR2022QE098)Major Scientific and Technological Innovation Project(No.2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant(No.ZR2020ZD09)Qingdao Postdoctoral Researcher Applied Research Project(No.04030431060100)Postdoctoral Innovation Project of Shandong Province(No.SDCX-ZG-20220307).
文摘At present,Ru dopants mainly enhance electrocatalytic performance by inducing strain,vacancy,local electron difference,and synergy.Surprisingly,this work innovatively proposes that trace Ru atoms induce dual-reconstruction of phosphide by regulating the electronic configuration and proportion of Co–P/Co–O species,and ultimately activate superb electrocatalytic performance.Specifically,Ru-CoFeP@C/nickel foam(NF)is reconstructed to generate hydrophilic Co(OH)_(2)nanosheets during the hydrogen evolution reaction(HER)process,further accelerating the alkaline HER kinetics of phosphide.And the as-formed CoOOH during the oxygen evolution reaction(OER)process directly accelerates the oxygen overflow efficiency.As expected,the overpotential at 100 mA·cm^(−2)(η100)values of the reconstructed Ru-CoFeP@C/NF are 0.104 and 0.257 V for HER and OER,which are greatly lower than that of Pt/C-NF and RuO_(2)-NF benchmarks,respectively.This work provides guidance for the construction of highperformance catalysts for HER and OER dual reconstruction.This work provides a new idea for the optimization of catalyst structure and electrocatalytic performance.