期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Controlled transition to different proton acceleration regimes:Near-critical-density plasmas driven by circularly polarized few-cycle pulses
1
作者 Shivani Choudhary De Marco Sudipta Mondal +1 位作者 Daniele Margarone Subhendu Kahaly 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第5期1-18,共18页
A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up,depending on the region of ope... A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up,depending on the region of operation.Based on numerical simulations conducted over a wide range of experimentally achievable parameter space,reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets.The results show that the plasma thickness,exponential density gradient,and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one,thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime.Next,it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species.Finally,the feasibility is demonstrated for generating monoenergetic proton beams with energy peak atℰ≈20–40 MeV and a narrow energy spread ofΔℰ/ℰ≈18%–28.6%confined within a divergence angle of∼175 mrad at a reasonable laser peak intensity of I0≃5.4×10^(20)W/cm^(2). 展开更多
关键词 ACCELERATION REGIME CIRCULAR
下载PDF
High-energy-density plasma in femtosecond-laser-irradiated nanowire-array targets for nuclear reactions 被引量:2
2
作者 Defeng Kong Guoqiang Zhang +22 位作者 Yinren Shou Shirui Xu Zhusong Mei Zhengxuan Cao Zhuo Pan Pengjie Wang Guijun Qi Yao Lou Zhiguo Ma Haoyang Lan Wenzhao Wang Yunhui Li Peter Rubovic Martin Veselsky Aldo Bonasera Jiarui Zhao Yixing Geng Yanying Zhao Changbo Fu Wen Luo Yugang Ma Xueqing Yan Wenjun Ma 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第6期29-40,共12页
In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulation... In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma,contributing most to the high energy densities.The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur.We give the electron and ion energy densities for broad target parameter ranges.The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets,and the volume of the HEDP was several-fold greater.At optimal target parameters,8%of the laser energy can be converted to confined protons,and this results in ion energy densities at the GJ/cm^(3) level.In the experiments,the measured energy of the emitted protons reached 4 MeV,and the changes in energy with the NWA’s parameters were found to fit the simulation results well.Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of(24±18)×10^(6)/J from deuterated polyethylene NWA targets also confirmed these results. 展开更多
关键词 IRRADIATED CONFINED eventually
下载PDF
First radiative shock experiments on the SG-II laser 被引量:1
3
作者 Francisco Suzuki-Vidal Thomas Clayson +17 位作者 Chantal Stehlé Uddhab Chaulagain Jack W.D.Halliday Mingying Sun Lei Ren Ning Kang Huiya Liu Baoqiang Zhu Jianqiang Zhu Carolina De Almeida Rossi Teodora Mihailescu Pedro Velarde Manuel Cotelo John M.Foster Colin N.Danson Christopher Spindloe Jeremy P.Chittenden Carolyn Kuranz 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2021年第2期193-200,共8页
We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a... We report on the design and first results from experiments looking at the formation of radiative shocks on the ShenguangII(SG-II)laser at the Shanghai Institute of Optics and Fine Mechanics in China.Laser-heating of a two-layer CH/CH–Br foil drives a∼40 km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar.The use of gas-cell targets with large(several millimetres)lateral and axial extent allows the shock to propagate freely without any wall interactions,and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved,pointprojection X-ray backlighting(∼20µm source size,4.3 keV photon energy).Single shocks were imaged up to 100 ns after the onset of the laser drive,allowing to probe the growth of spatial nonuniformities in the shock apex.These results are compared with experiments looking at counter-propagating shocks,showing a symmetric drive that leads to a collision and stagnation from∼40 ns onward.We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN,which provides expected plasma parameters for the design of future experiments in this facility. 展开更多
关键词 high energy density physics laboratory astrophysics plasma physics high-power laser laser-driven shocks EXPERIMENTS X-ray backlighting X-ray radiography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部