期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于计算缩放的光滑粒子水动力学方法模拟飞机油箱剧烈晃动问题
1
作者 Calderon-Sanchez Javier Martinez-Carrascal Jon Gonzalez Leo Miguel 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2023年第2期39-48,共10页
大型民用飞机的机翼设计用于承受从大气阵风到湍流到着陆冲击的各种载荷,机翼是需要进一步研究的重要结构.改进机翼设计的主要方法之一是分析晃动对承载液体的柔性机翼状结构动力学的阻尼效应.这将通过开发实验装置来实现,该装置将有助... 大型民用飞机的机翼设计用于承受从大气阵风到湍流到着陆冲击的各种载荷,机翼是需要进一步研究的重要结构.改进机翼设计的主要方法之一是分析晃动对承载液体的柔性机翼状结构动力学的阻尼效应.这将通过开发实验装置来实现,该装置将有助于建立和再现涉及物理领域的数值模型.因此,本工作的目的是使用数值方法光滑粒子流体动力学(SPH)作为主要数值工具,分析晃动在降低飞机结构设计载荷方面的影响.本研究中的一个关键因素是对比例实验的需求,这是评估计算工具是否能够准确近似不同比例的注册测量值的必要步骤.为此,建立了一个垂直振动水槽的数值模型,该模型是一个完全耦合的流固耦合问题.该结构通过质量-弹簧-阻尼器系统建模,对于内部流体,使用δ-SPH方法.特别是,研究了两个开放性问题:第一个问题是,当储罐的初始加速度是标准重力值的十倍时,重力对阻尼和能量耗散现象的影响程度;第二种问题旨在确认,当根据量纲分析对问题参数进行缩放时,SPH方程正确地再现了缩放定律. 展开更多
关键词 SPH SLOSHING GRAVITY Computational scaling
原文传递
DEVELOPABLE SURFACE PATCHES BOUNDED BY NURBS CURVES 被引量:1
2
作者 Leonardo Fernandez-Jambrina Francisco Perez-Arribas 《Journal of Computational Mathematics》 SCIE CSCD 2020年第5期715-731,共17页
In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizin... In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizing one of the boundary curves.The reparameterization function is the solution of an algebraic equation.For the relevant case of cubic or cubic spline curves,this equation is quartic at most,quadratic if the curves are B´ezier or splines and lie on parallel planes,and hence it may be solved either by standard analytical or numerical methods. 展开更多
关键词 NURBS B´ezier Rational Spline NURBS Developable surfaces
原文传递
Interpolation of a spline developable surface between a curve and two rulings 被引量:1
3
作者 Alicia CANTóN Leonardo FERNáNDEZ-JAMBRINA 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第3期173-190,共18页
In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a ... In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches. 展开更多
关键词 Developable surfaces Spline surfaces BLOSSOMS
原文传递
CHARACTERISATION OF RATIONAL AND NURBS DEVELOPABLE SURFACES IN COMPUTER AIDED DESIGN
4
作者 Leonardo Fernandez-Jambrina 《Journal of Computational Mathematics》 SCIE CSCD 2021年第4期556-573,共18页
In this paper we provide a characterisation of rational developable surfaces in terms of the blossoms of the bounding curves and three rational functions∧,M,ν.Properties of developable surfaces are revised in this f... In this paper we provide a characterisation of rational developable surfaces in terms of the blossoms of the bounding curves and three rational functions∧,M,ν.Properties of developable surfaces are revised in this framework.In particular,a closed algebraic formula for the edge of regression of the surface is obtained in terms of the functions∧,M,ν,which are closely related to the ones that appear in the standard decomposition of the derivative of the parametrisation of one of the bounding curves in terms of the director vector of the rulings and its derivative.It is also shown that all rational developable surfaces can be described as the set of developable surfaces which can be constructed with a constant∧,M,ν.The results are readily extended to rational spline developable surfaces. 展开更多
关键词 NURBS BEZIER RATIONAL SPLINE NURBS Developable surfaces
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部