Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for ...Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron(Nd-Fe-B)sintered magnets.In the present study,centerless grinding sludge from the Nd-Fe-B sintered magnet machining process was selected as the starting material.The sludge was subjected to a reduction-diffusion(RD)process in order to synthesize recycled neodymium magnet(Nd2Fe14B)powder;during this process,most of the valuable elements,including neodymium(Nd),praseodymium(Pr),gadolinium(Gd),dysprosium(Dy),holmium(Ho),and cobalt(Co),were recovered simultaneously.Calcium chloride(CaCl2)powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency.The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio.It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio(calcium/sludge)and reaction temperature were 40 wt% and 1050℃,respectively.The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd-Fe-B sintered magnets with a remanence of 12.1 kG(1 G=1×10^-4T),and a coercivity of 14.6 kOe(1 Oe=79.6A·m^-1),resulting in an energy product of 34.5 MGOe.This recycling route promises a great advantage in recycling efficiency as well as in cost.展开更多
Crystallographic alignment and magnetic anisotropy were studied for NdxFe94–xB6 (x=8,9,10,11) ribbons prepared via melt-spinning. Effect of Nd content and wheel speed on the crystal structure and magnetic propertie...Crystallographic alignment and magnetic anisotropy were studied for NdxFe94–xB6 (x=8,9,10,11) ribbons prepared via melt-spinning. Effect of Nd content and wheel speed on the crystal structure and magnetic properties of the ribbons was investigated. Both the free and wheel side of the ribbons could obtain strong c-axis crystal texture of Nd2Fe14B phase perpendicular to the ribbons surface at low wheel speed,but the texture weakened gradually with the increase of the wheel speed. Increase of Nd content led to better formation of crystal texture in the ribbons,indicating that the α-Fe phase might undermine the formation of crystal texture. Magnetic measurement results showed that the magnetic anisotropy of the ribbons exhibited corresponding behavior with the invariance of the c-axis crystal texture of Nd2Fe14B phase in the ribbons,and the coercivity of the ribbons rose with the increase of both Nd content and wheel speed during melt-spun process.展开更多
The grain boundary diffusion(GBD) technology was used to prepare high performance Nd-Fe-B sintered magnets by NdH3 and TbH3 nanoparticle diffusion.The factors affecting the coercivity of GBD magnets include distributi...The grain boundary diffusion(GBD) technology was used to prepare high performance Nd-Fe-B sintered magnets by NdH3 and TbH3 nanoparticle diffusion.The factors affecting the coercivity of GBD magnets include distribution of rare earth rich grain boundary phase and substitution of the heavy rare earth.In order to distinguish the influence of various factors on the coercivity,the microstructure and magnetic domain evolution of the original,reference,Nd-diffused,and Tb-diffused magnets were analyzed.The core-shell structure formed by heavy rare earth substitution is the main factor of coercivity enhancement,and it can transform the magnetic domain reversal mode from easy-nucleation(EN) to difficultnucleation(DN).With increasing the diffusion depth,the shell of the core-shell structure gradually becomes thinner,DN grains gradually decrease while the EN grains gradually increase,indicating that the magnetic domain reversal mode is directly related to the core-shell structure.展开更多
The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by ad...The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by adding ammonia-water and mixed organic solvents.Ammonia-water can react with the epoxy functional group of epoxy resin to generate polyols.Mixed organic solvents of alcohol,dimethyl formamide(DMF),and tetrahydrofuran(THF) can dissolve the generated polyols and residual epoxy resins.Under the optimum processing conditions,the epoxy resins in the waste magnetic powders are substantially removed.The oxygen and carbon contents in the recycled magnetic powder are reduced from 13500 × 10^(-6) to 1600 × 10^(-6) and from 19500 × 10^(-6) to 2100 × 10^(-6) with the reduction ratio of88.1% and 89.2%,respectively.The recycled magnetic powder presents improved magnetic properties with MS of 1.306 × 10^(-1) A·m^(2)/g,Mr of 0.926 × 10^(-1) A·m^(2)/g,Hcj of 1.170 T,and(BH)max of 125.732 kJ/m^(3),which reach 99.8%,99.4%,95.9%,and 96.9% of the original magnetic powders,respectively.展开更多
Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studi...Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studied. As the DyH3 nanoparticles additive increased, the coercivity of recycled magnet increased gradually. The recycled magnets with DyH3 nanoparticle content between 0.0 wt.% and 1.0 wt.% maintained the remanence (Br), but, with higher additions, the Br began to decrease rapidly. The best recycled magnet produced contained 1.0 wt.% of DyH3 nanoparticles when compared to the properties of the starting waste sintering magnet. The Hcj, Br and (BH)max values of 101.7%, 95.4%, and 88.58%, respectively, were recovered.展开更多
Nd-Fe-B permanent magnets with a small amount of A1 nano-particles doping were prepared by conventional sintered method. Effect of AI content on magnetic property, corrosion resistance and oxidation properties of the ...Nd-Fe-B permanent magnets with a small amount of A1 nano-particles doping were prepared by conventional sintered method. Effect of AI content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Inves- tigation showed that the coercivity rose gradually, while the remanence decreased simultaneously with increase of A1 doping amount. Further investigation revealed that most A1 element diffused into the main phase and some A1 element diffused into the Nd-rich phase The autoclave test results showed that the corrosion rate of the magnets decreased with A1 content increasing. After oxidation, the maximum energy product losses of the magnets with 0.0 wt.% and 0.2 wt.% AI nano-particles doping were 6.13% and 3.99%, respec- tively. Therefore, A1 nano-particles doping was a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnet.展开更多
Nd-Fe-B permanent magnets with a small amount of Cu nano-particles doping have been prepared by con-ventional sintered method. Effects of Cu content on magnetic properties, corrosion resistance, and oxidation properti...Nd-Fe-B permanent magnets with a small amount of Cu nano-particles doping have been prepared by con-ventional sintered method. Effects of Cu content on magnetic properties, corrosion resistance, and oxidation properties of the magnets have been studied. It shows that the coercivity rises gradually, while the remanence decreases simultaneously with increasing Cu doping amount. Microstructure observation reveals that Cu ele- ment enriches mainly the Nd-rich phase. Autoclave test results show that the corrosion rate of the magnets decreases with increasing Cu content. After oxidation, the maximum energy product loss of the magnets with 0 and 0.2 wt% Cu nano-particles doping are 6.13% and 0.g9%, respectively. Therefore, it is concluded that Cu nano-particles doping is a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnets.展开更多
The CeO2/epoxy resin composite coating was deposited on NdFeB substrate by cathode electrophoresis method for enhancing the anticorrosion and anti-wear performances. The morphologies and structures were characterized ...The CeO2/epoxy resin composite coating was deposited on NdFeB substrate by cathode electrophoresis method for enhancing the anticorrosion and anti-wear performances. The morphologies and structures were characterized by a scanning electron microscope and an X-ray diffractometer. The micro hardness of the composite coating was evaluated by a microhardness tester. The corrosive behaviors of the coatings were studied by potentiodynamic polarization curve, electrochemical impedance spectroscopy and neutral salt spray tests. The concentration of CeO2 nanoparticles(NPs) in the electrophoresis bath was optimized according to the coating structures and anticorrosion performances. The results show that CeO2 NPs can enhance the microhardness of the composite coatings. Moreover, the nanoparticles disperse uniformly in the matrix when the concentration is lower than 30 g/L. The microhardness of CeO2/epoxy resin(30 g/L) composite coating is about 63% higher than that of the blank epoxy resin coating. And the NSS time of the CeO2/epoxy resin(30 g/L) composite coated sample can reach 1248 h.Meanwhile, the composite coatings possess no deteriorate influence on the magnetic properties of NdFeB substrates. The anticorrosion mechanisms of the composite coatings on the NdFeB substrate are deeply discussed.展开更多
Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically stu...Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically studied. It shows that the remanence, coercivity, and maximum energy product decrease gradually with the increase in CuZn5 doping content. The magnet's corrosion kinetics in autoclaves environment and its electrochemical properties in electrolytes were also examined. It is interesting to see that the weight loss of 3.5 wt% and 4.5 wt% CuZn5 powders doping magnets is only 1 and 0 mg.cm^-2 after autoclaves test at 121 ℃, 2 × 10^5 Pa for 500 h, respectively, which is much lower than that of the magnets without CuZn5 doping. Electrochemical results show that the CuZn5 powders doping magnets display more positive corrosion potential (Eoorr) and lower corrosion current density (Icorr) than those of the original magnets without CuZn5 doping in sulphuric acid electrolyte and distilled water. It is, therefore, concluded that doping CuZn5 powders is a promising way to enhance the corrosion resistance of sintered Nd-Fe-B magnets.展开更多
Al coated NdFeB magnets were prepared by plasma-assisted-physical-vapor-deposition(PA-PVD)method fo r enhancing the corro sion resistance.Mo rphologies and structures were characterized by an Xray diffractometer and a...Al coated NdFeB magnets were prepared by plasma-assisted-physical-vapor-deposition(PA-PVD)method fo r enhancing the corro sion resistance.Mo rphologies and structures were characterized by an Xray diffractometer and a scanning electron microscope.Corrosion behaviors of the samples with different bias voltages were studied by electrochemical methods and neutral salt spray test,respectively.The bias voltage during the deposition process was optimized according to the coating structures and corrosion resistances.The density and flatness of Al coating increase with increasing the bias voltage,and at the same time the thickness decreases.The coating density and thickness turn to be stable when bias voltage is 1800 V.Also,the corrosion behaviors of PA-PVD Al coatings in different media,such as NaOH,HNO_(3) and NaCl solutions,were studied.The self-corrosion potentials(E_(corr)) of PA-PVD Al coatings almost keep constant in NaOH and HNO_(3) solutions with diffe rent concentrations.However,the self-corrosion current densities(J_(corr)) decrease with the increasing concentrations.E_(corr) shifts to negative potential and J_(corr)decreases gradually when increasing the concentration of NaCl solution.The corrosion mechanisms of Al coatings are discussed based on the corrosion behaviors in different media.展开更多
In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-...In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively.展开更多
Ternary Tb-Fe-B ribbons were prepared via melt-spun technique under different wheel speeds of 5-25 m/s.Effect of wheel speed on the crystal structure and microstructure of the ribbons was investigated.All the ribbons ...Ternary Tb-Fe-B ribbons were prepared via melt-spun technique under different wheel speeds of 5-25 m/s.Effect of wheel speed on the crystal structure and microstructure of the ribbons was investigated.All the ribbons quenched under different wheel speeds crystallized in single Tb2Fe14B phase with tetragon structure.Different crystallographic alignment evolutions were observed in the free side surface and wheel side surface of the ribbons.On the free-side surface,an in-plane c-axis crystal texture of Tb2Fe14B phase was found in the ribbons quenched at 5 m/s.However,with the increase in the wheel speed,the direction of the c-axis texture turns to perpendicular to the ribbon surface.On the wheel-side surface,a strong c-axis texture perpendicular to the ribbon surface was observed in the ribbons quenched at 5 m/s,and then weakened gradually with the increase in the wheel speed.Further investigation showed that the competition of the two types of temperature gradients during the quench process was responsible for the crystallographic alignment evolution in the ribbons.展开更多
基金financially supported by the National High Technology Research and Development Program of China(2012AA063201)the Beijing Municipal Natural Science Foundation(2172012)the State Key Laboratory of Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM17OF02).
文摘Given the increasing concern regarding the global decline in rare earth reserves and the environmental burden from current wet-process recycling techniques,it is urgent to develop an efficient recycling technique for leftover sludge from the manufacturing process of neodymium-iron-boron(Nd-Fe-B)sintered magnets.In the present study,centerless grinding sludge from the Nd-Fe-B sintered magnet machining process was selected as the starting material.The sludge was subjected to a reduction-diffusion(RD)process in order to synthesize recycled neodymium magnet(Nd2Fe14B)powder;during this process,most of the valuable elements,including neodymium(Nd),praseodymium(Pr),gadolinium(Gd),dysprosium(Dy),holmium(Ho),and cobalt(Co),were recovered simultaneously.Calcium chloride(CaCl2)powder with a lower melting point was introduced into the RD process to reduce recycling cost and improve recycling efficiency.The mechanism of the reactions was investigated systematically by adjusting the reaction temperature and calcium/sludge weight ratio.It was found that single-phase Nd2Fe14B particles with good crystallinity were obtained when the calcium weight ratio(calcium/sludge)and reaction temperature were 40 wt% and 1050℃,respectively.The recovered Nd2Fe14B particles were blended with 37.7 wt% Nd4Fe14B powder to fabricate Nd-Fe-B sintered magnets with a remanence of 12.1 kG(1 G=1×10^-4T),and a coercivity of 14.6 kOe(1 Oe=79.6A·m^-1),resulting in an energy product of 34.5 MGOe.This recycling route promises a great advantage in recycling efficiency as well as in cost.
基金Project supported by the National Natural Science Foundation of China (50871003, 20971116)the Key Project of the International Coopera-tion and Exchanges of Zhejiang Province (2006C14014)
文摘Crystallographic alignment and magnetic anisotropy were studied for NdxFe94–xB6 (x=8,9,10,11) ribbons prepared via melt-spinning. Effect of Nd content and wheel speed on the crystal structure and magnetic properties of the ribbons was investigated. Both the free and wheel side of the ribbons could obtain strong c-axis crystal texture of Nd2Fe14B phase perpendicular to the ribbons surface at low wheel speed,but the texture weakened gradually with the increase of the wheel speed. Increase of Nd content led to better formation of crystal texture in the ribbons,indicating that the α-Fe phase might undermine the formation of crystal texture. Magnetic measurement results showed that the magnetic anisotropy of the ribbons exhibited corresponding behavior with the invariance of the c-axis crystal texture of Nd2Fe14B phase in the ribbons,and the coercivity of the ribbons rose with the increase of both Nd content and wheel speed during melt-spun process.
基金Project supported by the National Natural Science Foundation of China(51971005,51371002)the National Key Research and Development Program of China(2018YFC1903405)+1 种基金International S&T Cooperation Program of China(2015DFG52020)Program of Top Disciplines Construction in Beijing(PXM2019_014204_500031)。
文摘The grain boundary diffusion(GBD) technology was used to prepare high performance Nd-Fe-B sintered magnets by NdH3 and TbH3 nanoparticle diffusion.The factors affecting the coercivity of GBD magnets include distribution of rare earth rich grain boundary phase and substitution of the heavy rare earth.In order to distinguish the influence of various factors on the coercivity,the microstructure and magnetic domain evolution of the original,reference,Nd-diffused,and Tb-diffused magnets were analyzed.The core-shell structure formed by heavy rare earth substitution is the main factor of coercivity enhancement,and it can transform the magnetic domain reversal mode from easy-nucleation(EN) to difficultnucleation(DN).With increasing the diffusion depth,the shell of the core-shell structure gradually becomes thinner,DN grains gradually decrease while the EN grains gradually increase,indicating that the magnetic domain reversal mode is directly related to the core-shell structure.
基金Project supported by the National Key Research and Development Program of China (YFC1903405)Major Science and Technology Projects of Anhui Province (201903a07020002)+1 种基金the Beijing Municipal Natural Science Foundation (2172012)Program of Top Disciplines Construction in Beijing(PXM2019014204500031),China。
文摘The main difficulty for the recovery of Nd-Fe-B bonded magnet wastes is how to completely remove the epoxy resins.In this study,chemical reaction and physical dissolution were combined to remove the epoxy resins by adding ammonia-water and mixed organic solvents.Ammonia-water can react with the epoxy functional group of epoxy resin to generate polyols.Mixed organic solvents of alcohol,dimethyl formamide(DMF),and tetrahydrofuran(THF) can dissolve the generated polyols and residual epoxy resins.Under the optimum processing conditions,the epoxy resins in the waste magnetic powders are substantially removed.The oxygen and carbon contents in the recycled magnetic powder are reduced from 13500 × 10^(-6) to 1600 × 10^(-6) and from 19500 × 10^(-6) to 2100 × 10^(-6) with the reduction ratio of88.1% and 89.2%,respectively.The recycled magnetic powder presents improved magnetic properties with MS of 1.306 × 10^(-1) A·m^(2)/g,Mr of 0.926 × 10^(-1) A·m^(2)/g,Hcj of 1.170 T,and(BH)max of 125.732 kJ/m^(3),which reach 99.8%,99.4%,95.9%,and 96.9% of the original magnetic powders,respectively.
基金supported by the National High Technology Research and Development Program of China(2012AA063201)National Natural Science Foundation of China(51001002,51371002)
文摘Recycling of waste sintered Nd-Fe-B permanent magnets by doping DyH3 nanoparticles was investigated. The effect of the DyH3 nanoparticles on the microstructure and magnetic properties of the recycled magnets was studied. As the DyH3 nanoparticles additive increased, the coercivity of recycled magnet increased gradually. The recycled magnets with DyH3 nanoparticle content between 0.0 wt.% and 1.0 wt.% maintained the remanence (Br), but, with higher additions, the Br began to decrease rapidly. The best recycled magnet produced contained 1.0 wt.% of DyH3 nanoparticles when compared to the properties of the starting waste sintering magnet. The Hcj, Br and (BH)max values of 101.7%, 95.4%, and 88.58%, respectively, were recovered.
基金Project supported by National Natural Science Foundation of China(51001002)Research Fund for the Doctoral Program of Higher Education of China(20091103120024)+3 种基金National High Technology Research and Development Program of China(2012AA063201)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission(KZ201110005007)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions211 Project of Beijing University of Technology and Rixin Talents of Beijing Universityof Technology for financial support
文摘Nd-Fe-B permanent magnets with a small amount of A1 nano-particles doping were prepared by conventional sintered method. Effect of AI content on magnetic property, corrosion resistance and oxidation properties of the magnets were studied. Inves- tigation showed that the coercivity rose gradually, while the remanence decreased simultaneously with increase of A1 doping amount. Further investigation revealed that most A1 element diffused into the main phase and some A1 element diffused into the Nd-rich phase The autoclave test results showed that the corrosion rate of the magnets decreased with A1 content increasing. After oxidation, the maximum energy product losses of the magnets with 0.0 wt.% and 0.2 wt.% AI nano-particles doping were 6.13% and 3.99%, respec- tively. Therefore, A1 nano-particles doping was a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnet.
基金supported by the National Natural Science Foundation of China (No. 51001002)the Research Fund for the Doctoral Program of Higher Education of China (No. 20091103120024)+2 种基金the National High Technology Research and Development Program of China (No.2012AA063201)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission (No. KZ201110005007)211 Project of Beijing University of Technology and Rixin Talents of Beijing University of Technology
文摘Nd-Fe-B permanent magnets with a small amount of Cu nano-particles doping have been prepared by con-ventional sintered method. Effects of Cu content on magnetic properties, corrosion resistance, and oxidation properties of the magnets have been studied. It shows that the coercivity rises gradually, while the remanence decreases simultaneously with increasing Cu doping amount. Microstructure observation reveals that Cu ele- ment enriches mainly the Nd-rich phase. Autoclave test results show that the corrosion rate of the magnets decreases with increasing Cu content. After oxidation, the maximum energy product loss of the magnets with 0 and 0.2 wt% Cu nano-particles doping are 6.13% and 0.g9%, respectively. Therefore, it is concluded that Cu nano-particles doping is a promising way to enhance the coercivity and corrosion resistance of sintered Nd-Fe-B magnets.
基金Project supported by the China Postdoctoral Science Foundation(2017M612065)Natural Science Foundation of Anhui Province(1408085MKL73,1408085MKL72)+1 种基金Anhui Key Research and Development Plan(1704a0902020)Fundamental Research Funds for the Central Universities(2016bh2x0004)
文摘The CeO2/epoxy resin composite coating was deposited on NdFeB substrate by cathode electrophoresis method for enhancing the anticorrosion and anti-wear performances. The morphologies and structures were characterized by a scanning electron microscope and an X-ray diffractometer. The micro hardness of the composite coating was evaluated by a microhardness tester. The corrosive behaviors of the coatings were studied by potentiodynamic polarization curve, electrochemical impedance spectroscopy and neutral salt spray tests. The concentration of CeO2 nanoparticles(NPs) in the electrophoresis bath was optimized according to the coating structures and anticorrosion performances. The results show that CeO2 NPs can enhance the microhardness of the composite coatings. Moreover, the nanoparticles disperse uniformly in the matrix when the concentration is lower than 30 g/L. The microhardness of CeO2/epoxy resin(30 g/L) composite coating is about 63% higher than that of the blank epoxy resin coating. And the NSS time of the CeO2/epoxy resin(30 g/L) composite coated sample can reach 1248 h.Meanwhile, the composite coatings possess no deteriorate influence on the magnetic properties of NdFeB substrates. The anticorrosion mechanisms of the composite coatings on the NdFeB substrate are deeply discussed.
基金financially supported by the National High Technology Research and Development Program of China (No. 2012AA063201)the National Natural Science Foundation of China (Nos. 51001002 and 51371002)+2 种基金the International S&T Cooperation Program of China (No.2015DFG52020)the Natural Science Foundation of Anhui Province (No.1408085MKL72)the 2011 Cooperative Innovation Center of Beijing University of Technology
文摘Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically studied. It shows that the remanence, coercivity, and maximum energy product decrease gradually with the increase in CuZn5 doping content. The magnet's corrosion kinetics in autoclaves environment and its electrochemical properties in electrolytes were also examined. It is interesting to see that the weight loss of 3.5 wt% and 4.5 wt% CuZn5 powders doping magnets is only 1 and 0 mg.cm^-2 after autoclaves test at 121 ℃, 2 × 10^5 Pa for 500 h, respectively, which is much lower than that of the magnets without CuZn5 doping. Electrochemical results show that the CuZn5 powders doping magnets display more positive corrosion potential (Eoorr) and lower corrosion current density (Icorr) than those of the original magnets without CuZn5 doping in sulphuric acid electrolyte and distilled water. It is, therefore, concluded that doping CuZn5 powders is a promising way to enhance the corrosion resistance of sintered Nd-Fe-B magnets.
基金Project supported by Fundamental Research Funds for the Central Universities(JZ2019YYPY0291)。
文摘Al coated NdFeB magnets were prepared by plasma-assisted-physical-vapor-deposition(PA-PVD)method fo r enhancing the corro sion resistance.Mo rphologies and structures were characterized by an Xray diffractometer and a scanning electron microscope.Corrosion behaviors of the samples with different bias voltages were studied by electrochemical methods and neutral salt spray test,respectively.The bias voltage during the deposition process was optimized according to the coating structures and corrosion resistances.The density and flatness of Al coating increase with increasing the bias voltage,and at the same time the thickness decreases.The coating density and thickness turn to be stable when bias voltage is 1800 V.Also,the corrosion behaviors of PA-PVD Al coatings in different media,such as NaOH,HNO_(3) and NaCl solutions,were studied.The self-corrosion potentials(E_(corr)) of PA-PVD Al coatings almost keep constant in NaOH and HNO_(3) solutions with diffe rent concentrations.However,the self-corrosion current densities(J_(corr)) decrease with the increasing concentrations.E_(corr) shifts to negative potential and J_(corr)decreases gradually when increasing the concentration of NaCl solution.The corrosion mechanisms of Al coatings are discussed based on the corrosion behaviors in different media.
基金Project supported by the National Key R&D Program of China (2021YFB3500801)the National Natural Science Foundation of China(52271161)+5 种基金the Science and Technology Program of Anhui Province(201903a07020002)General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM202010005009)"QiHang Programme"for Faculty of Materials and Manufacturing,BJUT (QH202211)Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031)Key Laboratory of Ionic Rare Earth Resources and Environment,Ministry of Natural Resources of the People’s Republic of China (2022IRERE302)the State Key Laboratory of Rare Earth Permanent Magnetic Materials Opening Foundation(SKLREPM170F02)。
文摘In this work,the recycled Nd-Fe-B powders and regenerated Nd-Fe-B sintered magnets with low impurity content were successfully prepared from Nd-Fe-B magnet sludge via reduction diffusion(RD)method followed by a chemo-selective dissolution washing proc ess.The chemo-selective dissolution effect of various solution(deionized water,dilute acetic acid solution,NH_(4)Cl-methanol solution) was evaluated by impurity content and magnetic properties of the recycled Nd-Fe-B powder.The NH_(4)Cl-methanol solution can selectively remove impurities with minimal damage to the magnetic phase.Besides,the optimal NH_(4)Cl concentration and liquid-to-solid ratio were investigated.As a consequence,the contents of Ca,O,and H after optimal washing process are reduced to 0.07 wt%,0.31 wt% and 0.22 wt%,respectively.Hence,M_(3) Tis increased to 146.72 emu/g,which is 33% higher than that of the initial sludge.Then,the regenerated Nd-Fe-B sintered magnets with properties of B_(r)=11.66 kG,H_(cj)=16.49 kOe,and(BH)_(m)=31.78 MGOe were successfully prepared by mixing with 40 wt% Nd4Fe14B alloy powders.Compared with the corresponding regenerated magnets washed with deionized water,the remanence and coercivity are increased by 18% and 59%,respectively.
基金Project supported by the National Natural Science Foundation of China (50871003)
文摘Ternary Tb-Fe-B ribbons were prepared via melt-spun technique under different wheel speeds of 5-25 m/s.Effect of wheel speed on the crystal structure and microstructure of the ribbons was investigated.All the ribbons quenched under different wheel speeds crystallized in single Tb2Fe14B phase with tetragon structure.Different crystallographic alignment evolutions were observed in the free side surface and wheel side surface of the ribbons.On the free-side surface,an in-plane c-axis crystal texture of Tb2Fe14B phase was found in the ribbons quenched at 5 m/s.However,with the increase in the wheel speed,the direction of the c-axis texture turns to perpendicular to the ribbon surface.On the wheel-side surface,a strong c-axis texture perpendicular to the ribbon surface was observed in the ribbons quenched at 5 m/s,and then weakened gradually with the increase in the wheel speed.Further investigation showed that the competition of the two types of temperature gradients during the quench process was responsible for the crystallographic alignment evolution in the ribbons.