期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Frequency-constrained Co-planning of Generation and Energy Storage with High-penetration Renewable Energy 被引量:8
1
作者 Chengming Zhang Lu Liu +3 位作者 Haozhong Cheng Dundun Liu Jianping Zhang Gang Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第4期760-775,共16页
Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge t... Large-scale renewable energy integration decreases the system inertia and restricts frequency regulation. To maintain the frequency stability, allocating adequate frequency-support sources poses a critical challenge to planners. In this context, we propose a frequency-constrained coordination planning model of thermal units, wind farms, and battery energy storage systems (BESSs) to provide satisfactory frequency supports. Firstly, a modified multi-machine system frequency response (MSFR) model that accounts for the dynamic responses from both synchronous generators and grid-connected inverters is constructed with preset power-headroom. Secondly, the rate-of-change-of-frequency (ROCOF) and frequency response power are deduced to construct frequency constraints. A data-driven piecewise linearization (DDPWL) method based on hyperplane fitting and data classification is applied to linearize the highly nonlinear frequency response power. Thirdly, frequency constraints are inserted into our planning model, while the unit commitment based on the coordinated operation of the thermal-hydro-wind-BESS hybrid system is implemented. At last, the proposed model is applied to the IEEE RTS-79 test system. The results demonstrate the effectiveness of our co-planning model to keep the frequency stability. 展开更多
关键词 Battery energy storage system(BESS) data-driven piecewise linearization generation planning multi-machine system frequency response unit commitment wind farm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部