A surface crystallization phenomenon on bonding pads and wires of integrated circuit chip is reported in this paper. Through a lot of experiments, an unknown failure effect caused by mixed crystalline matter is reveal...A surface crystallization phenomenon on bonding pads and wires of integrated circuit chip is reported in this paper. Through a lot of experiments, an unknown failure effect caused by mixed crystalline matter is revealed, whereas non-plasma fluorine contamination cannot cause the failure of bonding pads. By experiments combined with infrared spectroscopy analysis, the surface crystallization effect is studied. The conclusion of the study can provide the guidance for IC fabrication, modelling and analysis.展开更多
The disk resonator gyroscope is an attractive candidate for high-performance MEMS gyroscopes.This gyroscope consists of a sensor and readout electronics,and the characteristics of the sensor directly determine the per...The disk resonator gyroscope is an attractive candidate for high-performance MEMS gyroscopes.This gyroscope consists of a sensor and readout electronics,and the characteristics of the sensor directly determine the performance.For the sensor,a high-quality factor and long decaying time constant are the most important characteristics required to achieve high performance.We report a disk resonator gyroscope with a measured quality factor of 510 k and decaying time constant of 74.9 s,which is a record for MEMS silicon disk resonator gyroscopes,to the best of our knowledge.To improve the quality factor of the DRG,the quality factor improvement mechanism is first analyzed,and based on this mechanism two stiffness-mass decoupled methods,i.e.,spoke length distribution optimization and lumped mass configuration design,are proposed and demonstrated.A disk resonator gyroscope prototype is fabricated based on these design strategies,and the sensor itself shows an angle random walk as low as 0.001°/√h,demonstrating true potential to achieve navigation-grade performance.The gyroscope with readout electronics shows an angle random walk of 0.01°/√h and a bias instability of 0.04°/h at room temperature without compensation,revealing that the performance of the gyroscope is severely limited by the readout electronics,which should be further improved.We expect that the quality factor improvement methods can be used in the design of other MEMS gyroscopes and that the newly designed DRG can be further improved to achieve navigation-grade performances for high-end industrial,transportation,aerospace,and automotive applications.展开更多
文摘A surface crystallization phenomenon on bonding pads and wires of integrated circuit chip is reported in this paper. Through a lot of experiments, an unknown failure effect caused by mixed crystalline matter is revealed, whereas non-plasma fluorine contamination cannot cause the failure of bonding pads. By experiments combined with infrared spectroscopy analysis, the surface crystallization effect is studied. The conclusion of the study can provide the guidance for IC fabrication, modelling and analysis.
基金This work was supported by the National Natural Science Foundation of China under Grant 51575521the 2017 Huxiang Provincial Scholar Program.
文摘The disk resonator gyroscope is an attractive candidate for high-performance MEMS gyroscopes.This gyroscope consists of a sensor and readout electronics,and the characteristics of the sensor directly determine the performance.For the sensor,a high-quality factor and long decaying time constant are the most important characteristics required to achieve high performance.We report a disk resonator gyroscope with a measured quality factor of 510 k and decaying time constant of 74.9 s,which is a record for MEMS silicon disk resonator gyroscopes,to the best of our knowledge.To improve the quality factor of the DRG,the quality factor improvement mechanism is first analyzed,and based on this mechanism two stiffness-mass decoupled methods,i.e.,spoke length distribution optimization and lumped mass configuration design,are proposed and demonstrated.A disk resonator gyroscope prototype is fabricated based on these design strategies,and the sensor itself shows an angle random walk as low as 0.001°/√h,demonstrating true potential to achieve navigation-grade performance.The gyroscope with readout electronics shows an angle random walk of 0.01°/√h and a bias instability of 0.04°/h at room temperature without compensation,revealing that the performance of the gyroscope is severely limited by the readout electronics,which should be further improved.We expect that the quality factor improvement methods can be used in the design of other MEMS gyroscopes and that the newly designed DRG can be further improved to achieve navigation-grade performances for high-end industrial,transportation,aerospace,and automotive applications.