期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A.C. Recombination Velocity as Applied to Determine n<sup>+</sup>/p/p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness 被引量:1
1
作者 Amadou Mar Ndiaye Sega Gueye +6 位作者 Ousmane Sow Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Energy and Power Engineering》 2020年第10期543-554,共12页
This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuit... This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (<i>λ</i>), with boundary conditions that impose recombination velocities (<i>Sf</i>) and (<i>Sb</i>) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (<i>Sb</i>). By the graphic technique of comparing the two expressions obtained, depending on the thickness (<i>H</i>) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases. 展开更多
关键词 Silicon Solar Cell Modulation Frequency Recombination Velocity Base Thickness WAVELENGTH
下载PDF
Diffusion Coefficient at Resonance Frequency as Applied to n+/p/p+ Silicon Solar Cell Optimum Base Thickness Determination 被引量:1
2
作者 Amadou Mar Ndiaye Sega Gueye +6 位作者 Mame Faty Mbaye Fall Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第10期145-158,共14页
The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial developm... The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial development for a low cost. In this work, an n+/p/p+ crystalline silicon solar cell is studied under monochromatic illumination in modulation and placed in a constant magnetic field. The minority carriers’ diffusion coefficient (<em>D</em>(<em>ω</em>, <em>B</em>), in the (<em>p</em>) base leads to maximum values (Dmax) at resonance frequencies (<em>ωr</em>). These values are used in expressions of AC minority carriers recombination velocity (Sb(Dmax, H)) in the rear of the base, to extract the optimum thickness while solar cell is subjected to these specific conditions. Optimum thickness modelling relationships, depending respectively on Dmax, <em>ωr</em> and <em>B</em>, are then established, and will be data for industrial development of low-cost solar cells for specific use. 展开更多
关键词 Silicon Solar Cell Resonance Frequency Magnetic Field Recombination Velocity Base Thickness
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部