This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stag...To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilisticmulti-objective particle swarm optimization based on the point estimate method is employed to cope with thestochastic factors. The transient security region of the system is accurately ensured by the interior point methodin the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforcedin the last stage. Furthermore, the proposed strategy is a general framework that can combine other optimizationalgorithms. The proposed methodology is tested on the modified WSCC 9-bus system and the New England 39-bussystem. The results verify the feasibility of the method.展开更多
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com...To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application ...In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application of latest AI technology still has many technical difficulties to be solved.In the process of upgrading from the traditional power system to the new-type power system,AC grids,DC grids and micro grids coexist.In addition,there are huge amount of power equipment and electronic devices,and the coupling relationship is very complicated.Moreover,the high proportion of clean energy and flexible loads connected to the grid leads to the enhancement of the stochastic characteristics of the system.And short-term and ultra-short-term forecasts are much more difficult.Therefore,the editorial office of Global Energy Interconnection has planned the special issue of“Artificial Intelligence Applied in New-Type Power System”.展开更多
Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shad...Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shading conditions(PSC).It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power.Even though a lot of research has been carried out and impressive progress achieved for MPPT technology,it still faces some challenges and dilemmas.Firstly,the mathematical model established for PV cells is not precise enough.Second,the existing algorithms are often optimized for specific conditions and lack comprehensive adaptability to the actual operating environment.Besides,a single algorithm may not be able to give full play to its advantages.In the end,the selection criteria for choosing the suitable MPPT algorithm/converter combination to achieve better performance in a given scenario is very limited.Therefore,this paper systematically discusses the current research status and challenges faced by PV MPPT technology around the three aspects of MPPT models,algorithms,and hardware implementation.Through in-depth thinking and discussion,it also puts forward positive perspectives on future development,and five forward-looking solutions to improve the performance of PV systems MPPT are suggested.展开更多
The data-driven transient stability assessment(TSA)of power systems can predict online real-time prediction by learning the temporal features before and after faults.However,the accuracy of the assessment is limited b...The data-driven transient stability assessment(TSA)of power systems can predict online real-time prediction by learning the temporal features before and after faults.However,the accuracy of the assessment is limited by the quality of the data and has weak transferability.Based on this,this paper proposes a method for TSA of power systems based on an improved extreme gradient boosting(XGBoost)model.Firstly,the gradient detection method is employed to remove noise interference while maintaining the original time series trend.On this basis,a focal loss function is introduced to guide the training of theXGBoostmodel,enhancing the deep exploration of minority class samples to improve the accuracy of the model evaluation.Furthermore,to improve the generalization ability of the evaluation model,a transfer learning method based on model parameters and sample augmentation is proposed.The simulation analysis on the IEEE 39-bus system demonstrates that the proposed method,compared to the traditional machine learning-based transient stability assessment approach,achieves an average improvement of 2.16%in evaluation accuracy.Specifically,under scenarios involving changes in topology structure and operating conditions,the accuracy is enhanced by 3.65%and 3.11%,respectively.Moreover,the model updating efficiency is enhanced by 14–15 times,indicating the model’s transferable and adaptive capabilities across multiple scenarios.展开更多
The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid en...The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market.展开更多
Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages an...Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.展开更多
The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristi...The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,...The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,renewable energy generation should be supplemented and enhanced,from real-time,minute-to-minute variations to annual alterations influencing long-termstrategy.Wind energy generation does not only fluctuate but is also challenging to accurately forecast the timeframes of significance to electricity decision makers;day-ahead and long-term making plans of framework sufficiency such as meeting the network peak load annually.A utility that integrates wind and solar energy into its electricity mix would understand how to adapt to uncertainty and variability in operations while sustaining grid stability.Due to hydropower’s adaptability,a system using hydropower as one of its generating resources could be precisely adapted to absorb the variability of wind and solar energy.The objective of this research study is to create a hybrid system comprising hydro-wind and solar(Hybrid-HWS)integration for power balancing in an isolated electrical network in Klipkop village,Pretoria region,South Africa.The desirability of designing and building goaf storage tank in regard to capability,the fullness of line throughoutwater pumping,dispensing,storage tank spillage,and pressure difference throughout liquid flow within the storage tanks were preliminary assessed using geotechnical and weather forecasting data from a distinctive area of Klipkop town in Pretoria,South Africa.Different facility hours premised on daylight accessibility are scheduled to balance maximum load at early and late hours.However,in the scenario of electrical power,time shift requiring storage for extended periods of time,such as in terms of hours,Hybrid-HWS has been found to have a crucial role.The results of simulations showed a coordinated process design for Hybrid-HWS Energy Storage(ES)to determine everyday strategic planning in reducing the variability of the system resulting from wind-solar-pumped hydro ES output inadequacies and satisfy daily load demands.It could be recommended that by considering the adaptability characteristics,extremely rapidly,ramping,peaking support and maximum stabilizing aid of the system could be archived with pump-hydro into the energy mix which can provide specific guidelines for energy policymakers.展开更多
More and more uncertain factors in power systems and more and more complex operation modes of power systems put forward higher requirements for online transient stability assessment methods.The traditional modeldriven...More and more uncertain factors in power systems and more and more complex operation modes of power systems put forward higher requirements for online transient stability assessment methods.The traditional modeldriven methods have clear physical mechanisms and reliable evaluation results but the calculation process is time-consuming,while the data-driven methods have the strong fitting ability and fast calculation speed but the evaluation results lack interpretation.Therefore,it is a future development trend of transient stability assessment methods to combine these two kinds of methods.In this paper,the rate of change of the kinetic energy method is used to calculate the transient stability in the model-driven stage,and the support vector machine and extreme learning machine with different internal principles are respectively used to predict the transient stability in the data-driven stage.In order to quantify the credibility level of the data-driven methods,the credibility index of the output results is proposed.Then the switching function controlling whether the rate of change of the kinetic energy method is activated or not is established based on this index.Thus,a newparallel integratedmodel-driven and datadriven online transient stability assessment method is proposed.The accuracy,efficiency,and adaptability of the proposed method are verified by numerical examples.展开更多
1 Introduction The proposal of the concept of“New Power System”aims to illustrate the transform direction of the traditional power system,acting as the development core of the future new power grid.To achieve this,t...1 Introduction The proposal of the concept of“New Power System”aims to illustrate the transform direction of the traditional power system,acting as the development core of the future new power grid.To achieve this,the proposed strategic targets of“carbon neutralization and carbon peaking”must be implemented and insisted[1].The core feature of the new power system is that renewable energy plays a leading role and becomes the main source of energy supply,meanwhile,the goal of green energy utilization has also been put forward on the agenda.Green energy utilization includes two aspects,one is the exploitation and promotion of various green energy technologies,and the other is the digitalization of energy management.Under this trend,stochastic and fluctuating energy sources such as wind power and photovoltaic power replace deterministic controllable power sources such as thermal power,bringing challenges to power grid regulation and dispatching,as well as flexible operation.The large-scale integration of renewable energy and increasingly high proportion of power electronic equipment tend to bring about fundamental changes in the operation characteristics,safety control,and production mode of the power system.展开更多
High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the per...High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.展开更多
Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gainin...Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.展开更多
Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo...Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.展开更多
Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offe...Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.展开更多
Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane ...Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.展开更多
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘To address uncertainty as well as transient stability constraints simultaneously in the preventive control of windfarm systems, a novel three-stage optimization strategy is established in this paper. In the first stage, the probabilisticmulti-objective particle swarm optimization based on the point estimate method is employed to cope with thestochastic factors. The transient security region of the system is accurately ensured by the interior point methodin the second stage. Finally, the verification of the final optimal objectives and satisfied constraints are enforcedin the last stage. Furthermore, the proposed strategy is a general framework that can combine other optimizationalgorithms. The proposed methodology is tested on the modified WSCC 9-bus system and the New England 39-bussystem. The results verify the feasibility of the method.
基金funded by National Key Research and Development Program of China (2021YFB2601400)。
文摘To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
文摘In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application of latest AI technology still has many technical difficulties to be solved.In the process of upgrading from the traditional power system to the new-type power system,AC grids,DC grids and micro grids coexist.In addition,there are huge amount of power equipment and electronic devices,and the coupling relationship is very complicated.Moreover,the high proportion of clean energy and flexible loads connected to the grid leads to the enhancement of the stochastic characteristics of the system.And short-term and ultra-short-term forecasts are much more difficult.Therefore,the editorial office of Global Energy Interconnection has planned the special issue of“Artificial Intelligence Applied in New-Type Power System”.
基金funding from the Open Fund Project of Intelligent Electric Power Grid Key Laboratory of Sichuan Province under Grant(2023-IEPGKLSP-KFYB03)Yunnan Provincial Basic Research Project(202301AT070443).
文摘Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shading conditions(PSC).It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power.Even though a lot of research has been carried out and impressive progress achieved for MPPT technology,it still faces some challenges and dilemmas.Firstly,the mathematical model established for PV cells is not precise enough.Second,the existing algorithms are often optimized for specific conditions and lack comprehensive adaptability to the actual operating environment.Besides,a single algorithm may not be able to give full play to its advantages.In the end,the selection criteria for choosing the suitable MPPT algorithm/converter combination to achieve better performance in a given scenario is very limited.Therefore,this paper systematically discusses the current research status and challenges faced by PV MPPT technology around the three aspects of MPPT models,algorithms,and hardware implementation.Through in-depth thinking and discussion,it also puts forward positive perspectives on future development,and five forward-looking solutions to improve the performance of PV systems MPPT are suggested.
基金This work is supported by the State Grid Shanxi Electric Power Company Technology Project(52053023000B).
文摘The data-driven transient stability assessment(TSA)of power systems can predict online real-time prediction by learning the temporal features before and after faults.However,the accuracy of the assessment is limited by the quality of the data and has weak transferability.Based on this,this paper proposes a method for TSA of power systems based on an improved extreme gradient boosting(XGBoost)model.Firstly,the gradient detection method is employed to remove noise interference while maintaining the original time series trend.On this basis,a focal loss function is introduced to guide the training of theXGBoostmodel,enhancing the deep exploration of minority class samples to improve the accuracy of the model evaluation.Furthermore,to improve the generalization ability of the evaluation model,a transfer learning method based on model parameters and sample augmentation is proposed.The simulation analysis on the IEEE 39-bus system demonstrates that the proposed method,compared to the traditional machine learning-based transient stability assessment approach,achieves an average improvement of 2.16%in evaluation accuracy.Specifically,under scenarios involving changes in topology structure and operating conditions,the accuracy is enhanced by 3.65%and 3.11%,respectively.Moreover,the model updating efficiency is enhanced by 14–15 times,indicating the model’s transferable and adaptive capabilities across multiple scenarios.
基金supported by the National Natural Science Foundation of China(Grant No.52107087).
文摘The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market.
文摘Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.
文摘The high utilization level of renewable generation including residential photovoltaic (PV) systems together with the uncontrolled charging of electric vehicles (EVs) can have a significant impact on load characteristics in distribution networks. Harmonic content of PV generation, EV charging loads, and their influence on power quality indicators in residential distribution networks are discussed in this paper. For investigating likely power quality scenarios, PV generation and EV charging measurement results including current harmonic amplitude and phase angle values are used and compared with present load characteristics. Different modelling scenarios are analysed and a simplified model of harmonics in PVs and EVs is offered. The results of the study show moderate additional harmonic distortion in residential load current and voltage distortion at the substation’s busbar when PV generation and EV loading are added. The scenarios presented in this paper can be further used for modelling the actual harmonic loads of the PVs and EVs in distribution networks.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
基金This study was supported by the DUT Scholarship Scheme Masters:2022(RFA Smart Grid)Funding.
文摘The integration of solar and wind energy into the electrical grid has received global research attention due to their unpredictable characteristics.Because wind energy varies across all timescales of utility activity,renewable energy generation should be supplemented and enhanced,from real-time,minute-to-minute variations to annual alterations influencing long-termstrategy.Wind energy generation does not only fluctuate but is also challenging to accurately forecast the timeframes of significance to electricity decision makers;day-ahead and long-term making plans of framework sufficiency such as meeting the network peak load annually.A utility that integrates wind and solar energy into its electricity mix would understand how to adapt to uncertainty and variability in operations while sustaining grid stability.Due to hydropower’s adaptability,a system using hydropower as one of its generating resources could be precisely adapted to absorb the variability of wind and solar energy.The objective of this research study is to create a hybrid system comprising hydro-wind and solar(Hybrid-HWS)integration for power balancing in an isolated electrical network in Klipkop village,Pretoria region,South Africa.The desirability of designing and building goaf storage tank in regard to capability,the fullness of line throughoutwater pumping,dispensing,storage tank spillage,and pressure difference throughout liquid flow within the storage tanks were preliminary assessed using geotechnical and weather forecasting data from a distinctive area of Klipkop town in Pretoria,South Africa.Different facility hours premised on daylight accessibility are scheduled to balance maximum load at early and late hours.However,in the scenario of electrical power,time shift requiring storage for extended periods of time,such as in terms of hours,Hybrid-HWS has been found to have a crucial role.The results of simulations showed a coordinated process design for Hybrid-HWS Energy Storage(ES)to determine everyday strategic planning in reducing the variability of the system resulting from wind-solar-pumped hydro ES output inadequacies and satisfy daily load demands.It could be recommended that by considering the adaptability characteristics,extremely rapidly,ramping,peaking support and maximum stabilizing aid of the system could be archived with pump-hydro into the energy mix which can provide specific guidelines for energy policymakers.
基金funded by the Science and Technology Project of State Grid Shanxi Electric Power Co.,Ltd.(Project No.520530200013).
文摘More and more uncertain factors in power systems and more and more complex operation modes of power systems put forward higher requirements for online transient stability assessment methods.The traditional modeldriven methods have clear physical mechanisms and reliable evaluation results but the calculation process is time-consuming,while the data-driven methods have the strong fitting ability and fast calculation speed but the evaluation results lack interpretation.Therefore,it is a future development trend of transient stability assessment methods to combine these two kinds of methods.In this paper,the rate of change of the kinetic energy method is used to calculate the transient stability in the model-driven stage,and the support vector machine and extreme learning machine with different internal principles are respectively used to predict the transient stability in the data-driven stage.In order to quantify the credibility level of the data-driven methods,the credibility index of the output results is proposed.Then the switching function controlling whether the rate of change of the kinetic energy method is activated or not is established based on this index.Thus,a newparallel integratedmodel-driven and datadriven online transient stability assessment method is proposed.The accuracy,efficiency,and adaptability of the proposed method are verified by numerical examples.
文摘1 Introduction The proposal of the concept of“New Power System”aims to illustrate the transform direction of the traditional power system,acting as the development core of the future new power grid.To achieve this,the proposed strategic targets of“carbon neutralization and carbon peaking”must be implemented and insisted[1].The core feature of the new power system is that renewable energy plays a leading role and becomes the main source of energy supply,meanwhile,the goal of green energy utilization has also been put forward on the agenda.Green energy utilization includes two aspects,one is the exploitation and promotion of various green energy technologies,and the other is the digitalization of energy management.Under this trend,stochastic and fluctuating energy sources such as wind power and photovoltaic power replace deterministic controllable power sources such as thermal power,bringing challenges to power grid regulation and dispatching,as well as flexible operation.The large-scale integration of renewable energy and increasingly high proportion of power electronic equipment tend to bring about fundamental changes in the operation characteristics,safety control,and production mode of the power system.
文摘High-efficient isolated DC/DC converters with a high-efficiency synchronous reluctance generator(SRG)are the ultimate solutions in DC microgrid systems.The design and modeling of isolated DC/DC converters with the performance of SRG are carried out.On the generator side,reactive and active powers are used as pulse width modulation(PWM)control variables.Further,the flux estimator is used.Three-phase PWM rectifier is used by applying space vector modulation(SVM)with a constant switching frequency for direct power control.Further,the paper also includes the experimental validation of the results.The paper also proposes that highly efficient power converters and synchronous reluctance generators are required to achieve high performance for hybrid renewable energy systems applications.
基金supported by the National Natural Science Foundation of China(Grant No.42162026)the Applied Basic Research Foundation of Yunnan Province(Grant No.202201AT070083).
文摘Although disintegrated dolomite,widely distributed across the globe,has conventionally been a focus of research in underground engineering,the issue of slope stability issues in disintegrated dolomite strata is gaining increasing prominence.This is primarily due to their unique properties,including low strength and loose structure.Current methods for evaluating slope stability,such as basic quality(BQ)and slope stability probability classification(SSPC),do not adequately account for the poor integrity and structural fragmentation characteristic of disintegrated dolomite.To address this challenge,an analysis of the applicability of the limit equilibrium method(LEM),BQ,and SSPC methods was conducted on eight disintegrated dolomite slopes located in Baoshan,Southwest China.However,conflicting results were obtained.Therefore,this paper introduces a novel method,SMRDDS,to provide rapid and accurate assessment of disintegrated dolomite slope stability.This method incorporates parameters such as disintegrated grade,joint state,groundwater conditions,and excavation methods.The findings reveal that six slopes exhibit stability,while two are considered partially unstable.Notably,the proposed method demonstrates a closer match with the actual conditions and is more time-efficient compared with the BQ and SSPC methods.However,due to the limited research on disintegrated dolomite slopes,the results of the SMRDDS method tend to be conservative as a safety precaution.In conclusion,the SMRDDS method can quickly evaluate the current situation of disintegrated dolomite slopes in the field.This contributes significantly to disaster risk reduction for disintegrated dolomite slopes.
基金supported by the Key R&D Program of Shandong Province(2021CXGC010210).
文摘Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.
基金supported in part by the National Natural Science Foundation of China under Grant 51907116in part sponsored by Natural Science Foundation of Shanghai 22ZR1425400sponsored by Shanghai Rising-Star Program 23QA1404000。
文摘Insulation failure significantly contributes to the unpredictable shutdown of power equipment.Compared to the partial discharge and high-frequency(HF)injection methods,the HF common-mode(CM)leakage current method offers a non-intrusive and highly sensitive alternative.However,the detection of HF CM currents is susceptible to interference from differential-mode(DM)currents,which exhibit high-amplitude and multifrequency components during normal operation.To address this challenge,this paper proposes a double-ring current sensor based on the principle of magnetic shielding for inverter-fed machine winding insulation monitoring.The inner ring harnesses the magnetic aggregation effect to isolate the DM current magnetic field,whereas the outer ring serves as the magnetic core of the Rogowski current sensor,enabling HF CM current monitoring.First,the magnetic field distributions of the CM and DM currents were analyzed.Then,a correlation between the sensor parameters and signal-to-noise ratio of the target HF CM current was established.Finally,an experimental study was conducted on a 3-kW PMSM for verification.The results indicate that the proposed double-ring HF CM sensor can effectively mitigate DM current interference.Compared to a single-ring sensor,a reduction of approximately 40%in the DM component was achieved,which significantly enhanced the precision of online insulation monitoring.
基金supported by National Natural Science Foundation of China(Scientific Funds for Young Scientists)(No.52007064)。
文摘Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.