The behaviors of an interface crack between dissimilar orthotropic elastic half-planes subjected to uniform tension was reworked by use of the Schmidt method.By use of the Fourier transform,the problem can be solved w...The behaviors of an interface crack between dissimilar orthotropic elastic half-planes subjected to uniform tension was reworked by use of the Schmidt method.By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations,of which the unknown variables are the jumps of the displacements across the crack surfaces.Numerical examples are provided for the stress intensity factors of the cracks.Contrary to the previous solution of the interface crack,it is found that the stress singularity of the present interface crack solution is of the same nature as that for the ordinary crack in homogeneous materials.When the materials from the two half planes are the same,an exact solution can be otained.展开更多
The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the mag...The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the magnetic potential. Based on the potential theory, the coupled equations are reduced to the five uncoupled generalized Laplace equations with respect to five potential functions. Further, the elastic fields and electromagnetic fields are expressed in terms of the potential functions. These expressions construct the general solution of transversely isotropic magnetoelectroelastic media.展开更多
As Daqing Oilfield is developing oil layer with a big potential, the requirement for the quality of well cementation is higher than ever before. Cement rock is a brittle material containing a great number of microcrac...As Daqing Oilfield is developing oil layer with a big potential, the requirement for the quality of well cementation is higher than ever before. Cement rock is a brittle material containing a great number of microcracks and defects. In order to reduce the damage to cement ring and improve sealed cementing property at the interface, it is necessary to conduct research on the modification of the cement rock available. According to the principle of super mixed composite materials, various fillers are added to the ingredients of cement rock.Dynamic fracture toughness of cement rock will be changed under the influence of filler. In order to study the damage mechanism of the cement circle during perforation and carry out comprehensive experiments on preventing and resisting connection, a kind of comprehensive experiment equipment used to simulate perforation and multi-functional equipment for testing the dynamic properties of the material are designed. Experimental study of the dynamical mechanical performance of original and some improved cement rock and experiment used to simulate the well cementation and perforation are carried out. Standard for dynamical mechanical performance of the cement rock with fine impact resistance and mechanical properties of some improved cement rock are also given.展开更多
文摘The behaviors of an interface crack between dissimilar orthotropic elastic half-planes subjected to uniform tension was reworked by use of the Schmidt method.By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations,of which the unknown variables are the jumps of the displacements across the crack surfaces.Numerical examples are provided for the stress intensity factors of the cracks.Contrary to the previous solution of the interface crack,it is found that the stress singularity of the present interface crack solution is of the same nature as that for the ordinary crack in homogeneous materials.When the materials from the two half planes are the same,an exact solution can be otained.
文摘The coupling feature of transversely isotropic magnetoelectroelastic solids are governed by a system of five partial differential equations with respect to the elastic displacements, the electric potential and the magnetic potential. Based on the potential theory, the coupled equations are reduced to the five uncoupled generalized Laplace equations with respect to five potential functions. Further, the elastic fields and electromagnetic fields are expressed in terms of the potential functions. These expressions construct the general solution of transversely isotropic magnetoelectroelastic media.
基金the Natural Science Foundation of Heilongjiang Province (Grant No. A9856).
文摘As Daqing Oilfield is developing oil layer with a big potential, the requirement for the quality of well cementation is higher than ever before. Cement rock is a brittle material containing a great number of microcracks and defects. In order to reduce the damage to cement ring and improve sealed cementing property at the interface, it is necessary to conduct research on the modification of the cement rock available. According to the principle of super mixed composite materials, various fillers are added to the ingredients of cement rock.Dynamic fracture toughness of cement rock will be changed under the influence of filler. In order to study the damage mechanism of the cement circle during perforation and carry out comprehensive experiments on preventing and resisting connection, a kind of comprehensive experiment equipment used to simulate perforation and multi-functional equipment for testing the dynamic properties of the material are designed. Experimental study of the dynamical mechanical performance of original and some improved cement rock and experiment used to simulate the well cementation and perforation are carried out. Standard for dynamical mechanical performance of the cement rock with fine impact resistance and mechanical properties of some improved cement rock are also given.