期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
A combinatorial descriptor for volcano relationships of electrochemical nitrogen reduction reaction
1
作者 Ziyi Jiang Youcheng Hu +1 位作者 Jun Huang ShengLi Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第11期2881-2888,共8页
Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activit... Though touted as a potential way to realize clean ammonia synthesis,electrochemical ammonia synthesis is currently limited by its catalytic efficiency.Great effort has been made to find catalysts with improved activity toward electrochemical nitrogen reduction reaction(eNRR).Rational screening of catalysts can be facilitated using the volcano relationship between catalytic activity and adsorption energy of an intermediate,namely,the activity descriptor.In this work,we proposeΔG^(*)_(NH_(2))+ΔG^(*)_(NNH)as a combinatorial descriptor,which shows better predictive power than traditional descriptors using the adsorption free energies of single intermediates.The volcano plots based on the combinatorial descriptor exhibits peak activity fixedly at the descriptor value corresponding to the formation free energy of NH3,regardless of the catalyst types;while the descriptor values correspond to the top activities for eNRR on volcano plots based on single descriptors usually vary with the types of catalysts. 展开更多
关键词 Electrocatalysis Electrochemical nitrogen reduction reaction Single atom catalyst Single cluster catalyst Scaling relationship
下载PDF
Induced growth of Fe-N_x active sites using carbon templates 被引量:2
2
作者 Shiming Zhang Heyou Zhang +3 位作者 Weimin Zhang Xianxia Yuan Shengli Chen Zi-Feng Ma 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第8期1427-1435,共9页
Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon t... Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon template into a melamine/Fe-salt mixture to inductively generate highly active Fe-N_x sites for ORR. Using 57 Fe M?sbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, we studied the structural composition of the Fe and N co-doped carbon catalysts.Interestingly, the results showed that this system not only converted inactive Fe and Fe-carbides into active Fe-N_4 and other Fe-nitrides, but also improved their intrinsic activities. 展开更多
关键词 Oxygen reductionreaction Non‐precious‐metalelectrocatalyst Fe‐NxInduced growth Carbon template
下载PDF
Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO_4 被引量:1
3
作者 Youcheng Hu Xiaoxiao Wang +2 位作者 Peng Li Junxiang Chen Shengli Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第11期3297-3306,共10页
LiFePO_(4),one of the mainstream cathode materials of current EV batteries,exhibits experimental diffusion coefficients(D_(c))of Li^(+)which are not only several orders of magnitude lower than those predicted by the i... LiFePO_(4),one of the mainstream cathode materials of current EV batteries,exhibits experimental diffusion coefficients(D_(c))of Li^(+)which are not only several orders of magnitude lower than those predicted by the ionic hopping barriers obtained from theoretical calculations and spectroscopic measurements,but also span several orders from 10^(-14)to 10^(-18)cm^(2)s^(-1)under different states of charge(SOC)and the charging rates(C-rates).Atomic level understanding of such sluggishness and diversity of Li^(+)transport kinetics would be of significance in improving the rate performance of LiFePO_(4)through material and operation optimization but remain challenging.Herein,we show that the high sensitivity of Li^(+)hopping barriers on the local Li–Li coordination environments(numbers and configurations)plays a key role in the ion transport kinetics.This is due a neural network-based deep potential(DP)which allows accurate and efficient calculation of hopping barriers of Li^(+)in LiFePO_(4)with various Li–Li coordination environments,with which the kinetic Monte-Carlo(KMC)method was employed to determine the D_(c)values at various C-rates and SOC across a broad spectrum.Especially,an accelerated KMC simulation strategy is proposed to obtain the D_(c)values under a wide range of SOC at low C-rates,which agree well with that obtained from the galvanostatic intermittent titration technique(GITT).The present study provides accurate descriptions of Li^(+)transport kinetics at both very high and low C-rates,which remains challenging to experiments and first-principles calculations,respectively.Finally,it is revealed that the gradient distributions of Li^(+)density along the diffusion path result in great asymmetry in the barriers of the forward and backward hopping,causing very slow diffusion of Li^(+)and the diverse variation of D_(c). 展开更多
关键词 lithium iron phosphate diffusion coefficient machine-learning potential kinetic Monte Carlo simulations
原文传递
Discrepant roles of adsorbed OH^* species on IrWOx for boosting alkaline hydrogen electrocatalysis 被引量:3
4
作者 Luhong Fu Fulin Yang +3 位作者 Youcheng Hu Yunbo Li Shengli Chen Wei Luo 《Science Bulletin》 SCIE EI CAS CSCD 2020年第20期1735-1742,M0004,共9页
Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membr... Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes. 展开更多
关键词 Hydrogen oxidation reacion Hydrogen evolution reaction IrWOx HBE Bi-functional mechanism
原文传递
A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co_(3)O_(4)/NiO_(x)H_(y) interface 被引量:5
5
作者 Wang Wang Zixu Wang +2 位作者 Youcheng Hu Yucheng Liu Shengli Chen 《eScience》 2022年第4期438-444,共7页
Co_(3)O_(4)spinel oxides have manifested promising activity toward the oxygen evolution reaction(OER)through effective modifications.For them to become top electrocatalysts,however,accurate accounts of the catalytic k... Co_(3)O_(4)spinel oxides have manifested promising activity toward the oxygen evolution reaction(OER)through effective modifications.For them to become top electrocatalysts,however,accurate accounts of the catalytic kinetics are essential to gain a deep understanding of the activity promotion mechanisms.Herein,we use a newly proposed kinetic model based on energetic span as the rate-determining term for the electrocatalytic reaction to throw light on the promotion mechanism of Co_(3)O_(4)interfaced with nickel hydroxides(NiO_(x)H_(y))for the OER.We find that depending on the electrode potential,the OER kinetics at the designed interface between Co_(3)O_(4)and NiO_(x)H_(y)are boosted in entirely different ways.As a result,the OER can occur at a lower onset potential as well as a low Tafel slope.This work emphasizes the benefit of using rational theoretical models for electrocatalyst design. 展开更多
关键词 Oxygen evolution reaction Interface engineering Double exchange interaction Potential-driven switch of mechanism Energetic span
原文传递
Ion-vacancy coupled charge transfer model for ion transport in concentrated solutions 被引量:2
6
作者 Yu Gao Jun Huang +3 位作者 Yuwen Liu Jawei Yan Bingwei Mao Shengli Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第4期515-520,共6页
We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this p... We present a conceptual framework for understanding and formulating ion transport in concentrated solutions, which pictures the ion transport as an ion-vacancy coupled charge transfer reaction. A key element in this picture is that the transport of an ion from an occupied to unoccupied site involves a transition state which exerts double volume exclusion. An ab initio random walk model is proposed to describe this process. Subsequent coarse-graining results in a continuum formula as a function of chemical potentials of the constituents, which are further derived from a lattice-gas model. The subtlety here is that what has been taken to be the chemical potential of the ion in the past is actually that of the ion-vacancy couple. By aid of this new concept, the driving force of ion transport is essentially the chemical affinity of the ion-vacancy coupled charge transfer reaction, which is a useful concept to unify transport and reaction, two fundamental processes in electrochemistry. This phenomenological model is parameterized for a specific material by the aid of first-principles calculations. Moreover, its extension to multiple-component systems is discussed. 展开更多
关键词 concentrated solutions ION dynamics ION volume effect chemical affinity ion-vacancy COUPLE
原文传递
Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations
7
作者 YANG Fan LIU YuWen +2 位作者 OU LiHui WANG Xin CHEN ShengLi 《Science China Chemistry》 SCIE EI CAS 2010年第2期411-418,454-455,共10页
A density functional theory (DFT)-calculation scheme for constructing the modified embedded atom method (MEAM) potentials for face-centered cubic (fcc) metals is presented. The input quantities are carefully selected ... A density functional theory (DFT)-calculation scheme for constructing the modified embedded atom method (MEAM) potentials for face-centered cubic (fcc) metals is presented. The input quantities are carefully selected and a more reliable DFT approach for surface energy determination is introduced in the parameterization scheme, enabling MEAM to precisely predict the surface and nanoscale properties of metallic materials. Molecular dynamics simulations on Pt and Au crystals show that the parameterization employed leads to significantly improved accuracy of MEAM in calculating the surface and nanoscale properties, with the results agreeing well with both DFT calculations and experimental observations. The present study implies that rational DFT parameterization of MEAM may lead to a theoretical tool to bridge the gap between nanoscale theoretical simulations and DFT calculations. 展开更多
关键词 theoretical simulations MEAM DFT PARAMETERIZATION nanoparticles
原文传递
High-Performance Ru_(2)P Anodic Catalyst for Alkaline Polymer Electrolyte Fuel Cells
8
作者 Yuanmeng Zhao Fulin Yang +9 位作者 Wei Zhang Qihao Li Xuewei Wang Lixin Su Xuemei Hu Yan Wang Zizhun Wang Lin Zhuang Shengli Chen Wei Luo 《CCS Chemistry》 CAS 2022年第5期1732-1744,共13页
Exploring efficient and economical electrocatalysts and understanding the mechanism for alkaline hydrogen oxidation reaction(HOR)are crucial to facilitate the development of alkaline polymer electrolyte fuel cells(APE... Exploring efficient and economical electrocatalysts and understanding the mechanism for alkaline hydrogen oxidation reaction(HOR)are crucial to facilitate the development of alkaline polymer electrolyte fuel cells(APEFCs).Herein,Ru_(2)P was synthesized and used as an anodic HOR electrocatalyst for APEFC,achieving a peak power density of 1.3 W cm^(−2),the highest value among Pt-free anode electrocatalysts reported under the same conditions.Fromthe density functional theory(DFT)calculations and experimental results,it was found that besides the optimized hydrogen binding energy,the enhanced adsorption strength of oxygenated species(OH*)and the reduced work function of Ru_(2)P contributed to the enhanced HOR performance.The normalized exchange current densities of Ru_(2)P/C were 0.37 mA cm_(ECSA)^(−2) and 0.27 mAμgRu^(−1),respectively,both approximately three times higher than those of Ru when conducted in the rotating disk electrode(RDE)system.Our work provides a new pathway for exploring highly active Pt-free HOR electrocatalysts and expanding the family of anodic electrocatalysts for APEFCs. 展开更多
关键词 anodic ALKALINE ROTATING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部