The dynamics of fluid flow through nanochannels is different from those in macroscopic systems. By using the molecular dynamics simulations, we investigate the influence of surface polarity of nanotube on the transpor...The dynamics of fluid flow through nanochannels is different from those in macroscopic systems. By using the molecular dynamics simulations, we investigate the influence of surface polarity of nanotube on the transport properties of the water fluid. The nanotube used here resembles the carbon nanotube, but carries charges of q on some atoms; overall, the nanotube is charge-neutral. Our simulation results show that water flux decreases sharply with the increasing of q for q 〈 1.6 e; however, the water flux for shells far away from nanotube wM1 increases slightly when q 〉 1.6 e. The mechanism behind the interesting phenomenon is discussed. Our findings may have implications for development of nano-fluidic devices and for understanding the movement of confined fluid inside the hydrophilic nanochannel.展开更多
基金supported by the National Natural Science Foundation of China (11005093,10932010,11072220,11072229,U1262109,51176172,and 10972208)the Zhejiang Provincial Natural Science (Z6090556,Y6100384)Project of Educational Department of Zhejiang Province(Y200909221)
文摘The dynamics of fluid flow through nanochannels is different from those in macroscopic systems. By using the molecular dynamics simulations, we investigate the influence of surface polarity of nanotube on the transport properties of the water fluid. The nanotube used here resembles the carbon nanotube, but carries charges of q on some atoms; overall, the nanotube is charge-neutral. Our simulation results show that water flux decreases sharply with the increasing of q for q 〈 1.6 e; however, the water flux for shells far away from nanotube wM1 increases slightly when q 〉 1.6 e. The mechanism behind the interesting phenomenon is discussed. Our findings may have implications for development of nano-fluidic devices and for understanding the movement of confined fluid inside the hydrophilic nanochannel.