In this work,we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy(SPM)characterization.In light of traditional cross-sectional sample preparation solution...In this work,we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy(SPM)characterization.In light of traditional cross-sectional sample preparation solutions for transmission electron microscopy,mechanical polishing and focused ion beam(FIB)milling have been employed to prepare cross-sectional samples for SPM.We present an optimized solution for thin films and oxide heterostructures that allows for examining the prepared surfaces using various SPM techniques.In particular,post-cleaning after FIB milling is shown to be crucial and precision ion polishing was conducted to remove rough layers on mechanically polished samples.We also study SPM mechanical milling to remove amorphous layers on FIB-milled samples.Consequently,a reliable solution for making cross sections suitable for SPM has been achieved providing a useful methodology that can also be employed for other material systems with different hardness,such as polymers and metals.展开更多
文摘In this work,we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy(SPM)characterization.In light of traditional cross-sectional sample preparation solutions for transmission electron microscopy,mechanical polishing and focused ion beam(FIB)milling have been employed to prepare cross-sectional samples for SPM.We present an optimized solution for thin films and oxide heterostructures that allows for examining the prepared surfaces using various SPM techniques.In particular,post-cleaning after FIB milling is shown to be crucial and precision ion polishing was conducted to remove rough layers on mechanically polished samples.We also study SPM mechanical milling to remove amorphous layers on FIB-milled samples.Consequently,a reliable solution for making cross sections suitable for SPM has been achieved providing a useful methodology that can also be employed for other material systems with different hardness,such as polymers and metals.