Darrieus wind turbines are experiencing a renewed interest for their application in decentralized power generation and urban installation. Much attention and research efforts have been dedicated in the past to develop...Darrieus wind turbines are experiencing a renewed interest for their application in decentralized power generation and urban installation. Much attention and research efforts have been dedicated in the past to develop as an efficient standalone Darrieus turbine. Despite these efforts, these vertical axis turbines are still low in efficiency compared to the horizontal axis counterparts. The current architecture of the turbine and their inherent characteristics limit their application in low wind speed areas as confirmed experimentally and computationally by past research. To enable and extend their operation for weak wind flows, a novel design of Adaptive Darrieus Wind Turbine (ADWT) is proposed. The hybrid Darrieus Savonius rotor with dynamically varying Savonius rotor diameter based on the wind speed enables the turbine to start, efficiently operate and stop the turbine at high winds. As the wake of Savonius rotor has a profound impact on the power performance of the combined rotor, the wake of two buckets Savonius rotor in open and closed configuration is reviewed. The current study aims to develop an analytical model to predict the power coefficient and the influence of other design parameters on the proposed design. The formulated analytical model is coded in python, and the results are obtained for the 10 kW rotor. Parametric analysis on the chord length and the diameter of the closed Savonius rotor is performed in search of an optimized diameter to maximize the annual energy output. Blade torque and the rotor torque are evaluated with respect to azimuthal angle and compared with conventional Darrieus rotor. The computed results show that peak power coefficient of ADWT is 13% lower than the conventional Darrieus rotor at the rated wind speed of 10 m/s.展开更多
文摘Darrieus wind turbines are experiencing a renewed interest for their application in decentralized power generation and urban installation. Much attention and research efforts have been dedicated in the past to develop as an efficient standalone Darrieus turbine. Despite these efforts, these vertical axis turbines are still low in efficiency compared to the horizontal axis counterparts. The current architecture of the turbine and their inherent characteristics limit their application in low wind speed areas as confirmed experimentally and computationally by past research. To enable and extend their operation for weak wind flows, a novel design of Adaptive Darrieus Wind Turbine (ADWT) is proposed. The hybrid Darrieus Savonius rotor with dynamically varying Savonius rotor diameter based on the wind speed enables the turbine to start, efficiently operate and stop the turbine at high winds. As the wake of Savonius rotor has a profound impact on the power performance of the combined rotor, the wake of two buckets Savonius rotor in open and closed configuration is reviewed. The current study aims to develop an analytical model to predict the power coefficient and the influence of other design parameters on the proposed design. The formulated analytical model is coded in python, and the results are obtained for the 10 kW rotor. Parametric analysis on the chord length and the diameter of the closed Savonius rotor is performed in search of an optimized diameter to maximize the annual energy output. Blade torque and the rotor torque are evaluated with respect to azimuthal angle and compared with conventional Darrieus rotor. The computed results show that peak power coefficient of ADWT is 13% lower than the conventional Darrieus rotor at the rated wind speed of 10 m/s.