期刊文献+
共找到2,261篇文章
< 1 2 114 >
每页显示 20 50 100
Peak Shaving Strategy of Concentrating Solar Power Generation Based on Multi-Time-Scale and Considering Demand Response
1
作者 Lei Fang Haiying Dong +1 位作者 Xiaofei Zhen Shuaibing Li 《Energy Engineering》 EI 2024年第3期661-679,共19页
According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s... According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified. 展开更多
关键词 Peak shaving strategy concentrating solar power multi-time-scale demand-side response rolling optimization
下载PDF
Mechanical response and dilatancy characteristics of deep marble under different stress paths:A sight from energy dissipation
2
作者 LIU Xiao-hui HAO Qi-jun +2 位作者 ZHENG Yu ZHANG Zhao-peng XUE Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2070-2086,共17页
Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses ... Dilatancy is a fundamental volumetric growth behavior observed during loading and serves as a key index to comprehending the intricate nonlinear behavior and constitutive equation structure of rock.This study focuses on Jinping marble obtained from the Jinping Underground Laboratory in China at a depth of 2400 m.Various uniaxial and triaxial tests at different strain rates,along with constant confining pressure tests and reduced confining pressure tests under different confining pressures were conducted to analyze the mechanical response and dilatancy characteristics of the marble under four stress paths.Subsequently,a new empirical dilatancy coefficient is proposed based on the energy dissipation method.The results show that brittle failure characteristics of marble under uniaxial compression are more obvious with the strain rate increasing,and plastic failure characteristics of marble under triaxial compression are gradually strengthened.Furthermore,compared to the constant confining pressure,the volume expansion is relatively lower under unloading condition.The energy dissipation is closely linked to the process of dilatancy,with a rapid increase of dissipated energy coinciding with the beginning of dilatancy.A new empirical dilatancy coefficient is defined according to the change trend of energy dissipation rate curve,of which change trend is consistent with the actual dilatancy response in marble under different stress paths.The existing empirical and theoretical dilatancy models are analyzed,which shows that the empirical dilatancy coefficient based on the energy background is more universal. 展开更多
关键词 deep marble stress paths DILATANCY energy dissipation empirical dilatancy coefficient
下载PDF
Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction 被引量:1
3
作者 Ruxue Bai Yuetao Shi +1 位作者 Meng Yue Xiaonan Du 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期184-196,共13页
Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power syste... Photovoltaic(PV) power generation is characterized by randomness and intermittency due to weather changes.Consequently, large-scale PV power connections to the grid can threaten the stable operation of the power system. An effective method to resolve this problem is to accurately predict PV power. In this study, an innovative short-term hybrid prediction model(i.e., HKSL) of PV power is established. The model combines K-means++, optimal similar day approach,and long short-term memory(LSTM) network. Historical power data and meteorological factors are utilized. This model searches for the best similar day based on the results of classifying weather types. Then, the data of similar day are inputted into the LSTM network to predict PV power. The validity of the hybrid model is verified based on the datasets from a PV power station in Shandong Province, China. Four evaluation indices, mean absolute error, root mean square error(RMSE),normalized RMSE, and mean absolute deviation, are employed to assess the performance of the HKSL model. The RMSE of the proposed model compared with those of Elman, LSTM, HSE(hybrid model combining similar day approach and Elman), HSL(hybrid model combining similar day approach and LSTM), and HKSE(hybrid model combining K-means++,similar day approach, and LSTM) decreases by 66.73%, 70.22%, 65.59%, 70.51%, and 18.40%, respectively. This proves the reliability and excellent performance of the proposed hybrid model in predicting power. 展开更多
关键词 PV power prediction hybrid model K-means++ optimal similar day LSTM
下载PDF
Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density 被引量:1
4
作者 Yongjie He Shaowei Li +15 位作者 Rui Chen Xu Liu George Omololu Odunmbaku Wei Fang Xiaoxue Lin Zeping Ou Qianzhi Gou Jiacheng Wang Nabonswende Aida Nadege Ouedraogo Jing Li Meng Li Chen Li Yujie Zheng Shanshan Chen Yongli Zhou Kuan Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期193-203,共11页
Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti... Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials. 展开更多
关键词 Ionic thermoelectric Ion–electron coupling Ionic conductivity THERMOPOWER
下载PDF
Evaporative Cooling Applied in Thermal Power Plants:A Review of the State-ofthe-Art and Typical Case Studies 被引量:1
5
作者 Tiantian Liu Huimin Pang +7 位作者 Suoying He Bin Zhao Zhiyu Zhang Jucheng Wang Zhilan Liu Xiang Huang Yuetao Shi Ming Gao 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2229-2265,共37页
A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-coo... A review is conducted about the application of the evaporative cooling technology in thermal power plants.Different case studies are considered,namely,evaporative air conditioners,evaporative cooling in direct air-cooled systems,gas turbine inlet cooling,wet cooling towers,and hybrid cooling towers with a crosswind effect.Some effort is provided to describe the advantages related to direct evaporative cooling when it is applied in thermal power plants and illustrate the research gaps,which have not been filled yet.In particular,typical case studies are intentionally used to compare the cooling performances when direct evaporative cooling is implemented in different types of cooling towers,including the natural draft wet cooling tower(NDWCT)and the pre-cooled natural draft dry cooling tower(NDDCT).It is shown that the NDWCT provides the best cooling performance in terms of power station cooling,followed by the pre-cooled NDDCT,and the NDDCT;moreover,the evaporative pre-cooling is able to enhance the cooling performance of NDDCT.Besides,on a yearly basis,better NDDCT cooling performances can be obtained by means of a spray-based pre-cooling approach with respect to wet media pre-cooling.Therefore,the use of nozzle spray is suggested for improvement in the performance of indirect/direct air-cooling systems with controlled water consumption. 展开更多
关键词 Direct evaporative cooling cooling tower cooling performance wet media nozzle spray thermal power plants
下载PDF
Bioresource Upgrade for Sustainable Energy,Environment,and Biomedicine 被引量:1
6
作者 Fanghua Li Yiwei Li +13 位作者 KSNovoselov Feng Liang Jiashen Meng Shih‑Hsin Ho Tong Zhao Hui Zhou Awais Ahmad Yinlong Zhu Liangxing Hu Dongxiao Ji Litao Jia Rui Liu Seeram Ramakrishna Xingcai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期48-97,共50页
We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).... We conceptualize bioresource upgrade for sustainable energy,environment,and biomedicine with a focus on circular economy,sustainability,and carbon neutrality using high availability and low utilization biomass(HALUB).We acme energy-efficient technologies for sustainable energy and material recovery and applications.The technologies of thermochemical conversion(TC),biochemical conversion(BC),electrochemical conversion(EC),and photochemical conversion(PTC)are summarized for HALUB.Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg^(-1)and total benefit of 749$/ton biomass via TC.Specific surface area of biochar reached 3000 m^(2)g^(-1)via pyrolytic carbonization of waste bean dregs.Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%.Besides,lignocellulosic biomass can contribute to a current density of 672 mA m^(-2)via EC.Bioresource can be 100%selectively synthesized via electrocatalysis through EC and PTC.Machine learning,techno-economic analysis,and life cycle analysis are essential to various upgrading approaches of HALUB.Sustainable biomaterials,sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis,microfluidic and micro/nanomotors beyond are also highlighted.New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed. 展开更多
关键词 High availability low utilization biomass(HALUB) Circular economy Machine learning Energy-efficient conversion Nano-catalysis
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:2
7
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:1
8
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries:Overcoming Challenges and Real-World Applications 被引量:1
9
作者 Mustafa Khan Suxia Yan +6 位作者 Mujahid Ali Faisal Mahmood Yang Zheng Guochun Li Junfeng Liu Xiaohui Song Yong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期341-384,共44页
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material... Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs. 展开更多
关键词 Silicon anode Energy storage NANOSTRUCTURE Prelithiation BINDER
下载PDF
System Energy and Efficiency Analysis of 12.5 W VRFB with Different Flow Rates
10
作者 Kehuan Xie Longhai Yu Chuanchang Li 《Energy Engineering》 EI 2023年第12期2903-2915,共13页
Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To... Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To study the effect of electrolyte flow rate on the performance of VRFB,the hydrodynamic model is established and a VRFB system is developed.The results show that under constant current density,with the increase of electrolyte flow rate,not only the coulombic efficiency,energy efficiency,and voltage efficiency will increase,but also the capacity and energy discharged by VRFB will also increase.But on the other hand,as the flow rate increases,the power of the pump also increases,resulting in a decrease in system efficiency.The energy discharged by the system does not increase with the increase in flow rate.Considering the balance between efficiency and pump power loss,it is experimentally proved that 120 mL·min-1 is the optimal working flow rate of the VRFB system,which can maximize the battery performance and discharge more energy. 展开更多
关键词 Vanadium redox flow battery flow rate system energy EFFICIENCY
下载PDF
Virtual Synchronous Generator Adaptive Control of Energy Storage Power Station Based on Physical Constraints
11
作者 Yunfan Huang Qingquan Lv +1 位作者 Zhenzhen Zhang Haiying Dong 《Energy Engineering》 EI 2023年第6期1401-1420,共20页
The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability ... The virtual synchronous generator(VSG)can simulate synchronous machine’s operation mechanism in the control link of an energy storage converter,so that an electrochemical energy storage power station has the ability to actively support the power grid,from passive regulation to active support.Since energy storage is an important physical basis for realizing the inertia and damping characteristics in VSG control,energy storage constraints of the physical characteristics on the system control parameters are analyzed to provide a basis for the system parameter tuning.In a classic VSG control,its virtual inertia and damping coefficient remain unchanged.When the grid load changes greatly,the constant control strategy most likely result in the grid frequency deviation beyond the stable operation standard limitations.To solve this problem,a comprehensive control strategy considering electrified wire netting demand and energy storage unit state of charge(SOC)is proposed,and an adaptive optimization method of VSG parameters under different SOC is given.The energy storage battery can maintain a safe working state at any time and be smoothly disconnected,which can effectively improve the output frequency performance of energy storage system.Simulation results further demonstrated the effectiveness of the VSG control theoretical analysis. 展开更多
关键词 VSG energy storage power station physical constraints of energy storage adaptive parameter frequency performance
下载PDF
Isotopic dependence of the yield ratios of light fragments from different projectiles and their unified neutron skin thicknesses
12
作者 Ting-Zhi Yan Shan Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期228-236,共9页
The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(ever... The yield ratios of neutron-proton(R(n/p))and^(3)H-^(3)He(R(^(3)H∕^(3)He))with reduced rapidity from 0 to 0.5 were simulated at 50 MeV/u even-even ^(36−56)Ca+^(40)Ca,even-even ^(48−78)Ni+^(58)Ni,and ^(100−139)Sn(every third isotopes)+112 Sn for full reduced impact parameters using the isospin-dependent quantum molecular dynamics(IQMD)model.The neutron and proton density distributions and root-mean-square radii of the reaction systems were obtained using the Skyrme-Hartree-Fock model,which was used for the phase space initialization of the projectile and target in IQMD.We defined the unified neutron skin thickness asΔRnp=<r^(2)>^(1∕2) n−<r^(2)>^(1∕2)p,which was negative for neutron-deficient nuclei.The unifiedΔRnp values for nuclei with the same relative neutron excess from different isotopic chains were nearly equal,except for extreme neutron-rich isotopes,which is a type of scaling behavior.The yield ratios of the three isotopic chain-induced reactions,which depended on the reduced impact parameter and unified neutron skin thickness,were studied.The results showed that both R(n/p)and R(^(3)H∕^(3)He)decreased with a reduced impact parameter for extreme neutron-deficient isotopes;however,they increased with reduced impact parameters for extreme neutron-rich isotopes,and increased with theΔRnp of the projectiles for all reduced impact parameters.In addition,a scaling phenomenon was observed betweenΔR np and the yield ratios in peripheral colli-sions from different isotopic chain projectiles(except for extreme neutron-rich isotopes).Thus,R(n/p)and R(^(3)H∕^(3)He)from peripheral collisions were suggested as experimental probes for extracting the neutron or proton skin thicknesses of non-extreme neutron-rich nuclei from different isotopic chains. 展开更多
关键词 Exotic nuclei Unified neutron skin thickness Yield ratios IQMD
下载PDF
Micro segment analysis of supercritical methane thermal-hydraulic performance and pseudo-boiling in a PCHE straight channel
13
作者 Qian Li Zi-Jie Lin +3 位作者 Liu Yang Yue Wang Yue Li Wei-Hua Cai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1275-1289,共15页
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the... The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE. 展开更多
关键词 Printed circuit heat exchanger Vaporization Supercritical methane Pseudo-boiling Micro segment analysis
下载PDF
Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body
14
作者 Zijie Li Hao Wang +1 位作者 Changshun Chen Kun Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期317-326,共10页
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th... The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads. 展开更多
关键词 Shock wave/vortex interference Muzzle jet Constrained boundary Dynamic grid
下载PDF
Geochemical modeling to aid experimental design for multiple isotope tracer studies of coupled dissolution and precipitation reaction kinetics
15
作者 Mingkun Chen Peng Lu +1 位作者 Yongchen Song Chen Zhu 《Acta Geochimica》 EI CAS CSCD 2024年第1期1-15,共15页
It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental... It is a challenge to make thorough but efficient experimental designs for the coupled mineral dissolution and precipitation studies in a multi-mineral system, because it is difficult to speculate the best experimental duration, optimal sampling schedule, effects of different experimental conditions, and how to maximize the experimental outputs prior to the actual experiments. Geochemical modeling is an efficient and effective tool to assist the experimental design by virtually running all scenarios of interest for the studied system and predicting the experimental outcomes. Here we demonstrated an example of geochemical modeling assisted experimental design of coupled labradorite dissolution and calcite and clayey mineral precipitation using multiple isotope tracers. In this study, labradorite(plagioclase) was chosen as the reactant because it is both a major component and one of the most reactive minerals in basalt. Following our isotope doping studies of single minerals in the last ten years, initial solutions in the simulations were doped withmultiple isotopes(e.g., Ca and Si). Geochemical modeling results show that the use of isotope tracers gives us orders of magnitude more sensitivity than the conventional method based on concentrations and allows us to decouple dissolution and precipitation reactions at near-equilibrium condition. The simulations suggest that the precise unidirectional dissolution rates can inform us which rate laws plagioclase dissolution has followed. Calcite precipitation occurred at near-equilibrium and the multiple isotope tracer experiments would provide near-equilibrium precipitation rates, which was a challenge for the conventional concentration-based experiments. In addition, whether the precipitation of clayey phases is the rate-limiting step in some multi-mineral systems will be revealed. Overall, the modeling results of multimineral reaction kinetics will improve the understanding of the coupled dissolution–precipitation in the multi-mineral systems and the quality of geochemical modeling prediction of CO_(2) removal and storage efficacy in the basalt systems. 展开更多
关键词 Kinetics FELDSPAR Isotope doping Near-equilibrium CO_(2)sequestration BASALT
下载PDF
Hydrogen release of NaBH_(4) below 60 ℃ with binary eutectic mixture of xylitol and erythritol additive
16
作者 Yugang Shu Jiaguang Zheng +4 位作者 Chengguo Yan Ao Xia Meiling Lv Zhenxuan Ma Zhendong Yao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期225-234,共10页
NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exh... NaBH_(4) was widely regarded as a low-cost hydrogen storage material due to its high-mass hydrogen capacity of approximately 10.8%(mass)and high volumetric hydrogen capacity of around 115 g·L^(–1).However,it exhibits strong stability and requires temperatures above 500℃ for hydrogen release in practical applications.In this study,two polyhydric alcohols,xylitol and erythritol(XE),were prepared as a binary eutectic sugar alcohol through a grinding-melting method.This binary eutectic sugar alcohol was used as a proton-hydrogen carrier to destabilize NaBH_(4).The 19NaBH_(4)-16XE composite material prepared by ball milling could start releasing hydrogen at 57.5℃,and the total hydrogen release can reach over 88.8%(4.45%(mass))of the theoretical capacity.When the 19NaBH_(4)-16XE composite was pressed into solid blocks,the volumetric hydrogen capacity of the block-shaped composite could reach 67.2 g·L^(–1).By controlling the temperature,the hydrogen desorption capacity of the NaBH_(4)-XE composite material was controllable,which has great potential for achieving solid-state hydrogen production from NaBH_(4). 展开更多
关键词 HYDROGEN DESORPTION Binary mixture NaBH_(4) XYLITOL ERYTHRITOL
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
17
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Failure characteristics and fracture mechanism of overburden rock induced by mining:A case study in China
18
作者 Jiawei Li Meng Zhang +2 位作者 Changxiang Wang Changlong Liao Baoliang Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期241-255,共15页
This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided... This study employs similar simulation testing and discrete element simulation coupling to analyze the failure and deformation processes of a model coal seam's roof.The caving area of the overburden rock is divided into three zones:the delamination fracture zone,broken fracture zone,and compaction zone.The caving and fracture zones'heights are approximately 110 m above the coal seam,with a maximum subsidence of 11 m.The delamination fracture zone's porosity range is between 0.2 and 0.3,while the remainder of the roof predominantly exhibits a porosity of less than 0.1.In addition,the numerical model's stress analysis revealed that the overburden rock's displacement zone forms an'arch-beam'structure starting from 160 m,with the maximum and minimum stress values decreasing as the distance of advancement increases.In the stress beam interval of the overburden rock,the maximum value changes periodically as the advancement distance increases.Based on a comparative analysis between observable data from on-site work and numerical simulation results,the stress data from the numerical simulation are essentially consistent with the actual results detected on-site,indicating the validity of the numerical simulation results. 展开更多
关键词 Fracture development characteristics Similar simulation experiment Layer porosity Discrete element numerical simulation
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
19
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT Heat and mass transfer
下载PDF
Enhanced properties of stone coal-based composite phase change materials for thermal energy storage
20
作者 Baoshan Xie Huan Ma +1 位作者 Chuanchang Li Jian Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期206-215,共10页
Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential... Phase change materials (PCMs) can be incorporated with low-cost minerals to synthesize composites for thermal energy storage in building applications.Stone coal (SC) after vanadium extraction treatment shows potential for secondary utilization in composite preparation.We prepared SC-based composite PCMs with SC as a matrix,stearic acid (SA) as a PCM,and expanded graphite (EG) as an additive.The combined roasting and acid leaching treatment of raw SC was conducted to understand the effect of vanadium extraction on promoting loading capacity.Results showed that the combined treatment of roasting at 900℃ and leaching increased the SC loading of the composite by 6.2%by improving the specific surface area.The loading capacity and thermal conductivity of the composite obviously increased by 127%and 48.19%,respectively,due to the contribution of 3wt% EG.These data were supported by the high load of 66.69%and thermal conductivity of 0.59 W·m^(-1)·K-1of the designed composite.The obtained composite exhibited a phase change temperature of 52.17℃,melting latent heat of 121.5 J·g^(-1),and good chemical compatibility.The SC-based composite has prospects in building applications exploiting the secondary utilization of minerals. 展开更多
关键词 thermal energy storage phase change material stone coal vanadium extraction secondary utilization
下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部