A combined system of heating, power and biogas (CHPB) system has been developed and tested in a single building in MinQin County, Gansu Province, China. The proposed system satisfies the user’s demand of power, heat,...A combined system of heating, power and biogas (CHPB) system has been developed and tested in a single building in MinQin County, Gansu Province, China. The proposed system satisfies the user’s demand of power, heat, and gas. The CHPB system can effectively overcome seasonal, climate and many other factors which affect the production of the renewable energy. For this purpose, experiments were conducted extensively during the winter period from November 2014 to March 2015. Compared with conventional energy supply systems meets the test household indoor temperature level, the system can reduce the consumption of standard coal 5819.30 kg/year, and save energy costs 11,046.20 yuan/year, the system’s payback period of 4.37 years, also can save 27.03 tons of carbon dioxide emissions. As a result, the CHPB system have been successfully tested for single building, use solar energy and biomass as input and produce power, heat, and gas steadily. These results contributed to the construction of energy supply systems.展开更多
Mesoporous silica(mSiO_(2))has attracted great interest as anode for lithium-ion batteries.However,the low intrinsic conductivity is a major challenge for its commercialization.In this study,a low-cost sol–gel method...Mesoporous silica(mSiO_(2))has attracted great interest as anode for lithium-ion batteries.However,the low intrinsic conductivity is a major challenge for its commercialization.In this study,a low-cost sol–gel method is employed to synthesize mesoporous silica anchored on graphene nanosheets(rGO)for lithium storage.The results exhibit that the nanocomposite(mSiO_(2)@rGO)with high surface area(616.45 m^(2)·g^(–1))has chemical coupling bonds(Si–O–C)between SiO2 and rGO species,which would be favorable for lithium storage upon synergistic effects.Consequently,the mSiO_(2)@rGO exhibits a high specific capacity of 1119.6 mAh·g^(–1)at 0.1 A·g^(–1)with outstanding cycling stability(92.5%retention over 1400 cycles at 1.0 A·g^(–1)).展开更多
文摘A combined system of heating, power and biogas (CHPB) system has been developed and tested in a single building in MinQin County, Gansu Province, China. The proposed system satisfies the user’s demand of power, heat, and gas. The CHPB system can effectively overcome seasonal, climate and many other factors which affect the production of the renewable energy. For this purpose, experiments were conducted extensively during the winter period from November 2014 to March 2015. Compared with conventional energy supply systems meets the test household indoor temperature level, the system can reduce the consumption of standard coal 5819.30 kg/year, and save energy costs 11,046.20 yuan/year, the system’s payback period of 4.37 years, also can save 27.03 tons of carbon dioxide emissions. As a result, the CHPB system have been successfully tested for single building, use solar energy and biomass as input and produce power, heat, and gas steadily. These results contributed to the construction of energy supply systems.
基金This study was financially supported by the Postdoctoral Science Foundation of Jiangsu Province(No.2019K295)the Six Talent Peaks Project in Jiangsu Province(No.XNY-007,2018)+3 种基金the“333”Project in Jiangsu Province(No.BRA2019277)the Natural Science Foundation of Jiangsu Province(No.BK20170549)and the National Natural Science Foundation of China(Nos.21706103 and 22075109)Sherif A.El-Khodary would like to thank Jiangsu University for supporting the post-doctoral fellowship and funding the current project.
文摘Mesoporous silica(mSiO_(2))has attracted great interest as anode for lithium-ion batteries.However,the low intrinsic conductivity is a major challenge for its commercialization.In this study,a low-cost sol–gel method is employed to synthesize mesoporous silica anchored on graphene nanosheets(rGO)for lithium storage.The results exhibit that the nanocomposite(mSiO_(2)@rGO)with high surface area(616.45 m^(2)·g^(–1))has chemical coupling bonds(Si–O–C)between SiO2 and rGO species,which would be favorable for lithium storage upon synergistic effects.Consequently,the mSiO_(2)@rGO exhibits a high specific capacity of 1119.6 mAh·g^(–1)at 0.1 A·g^(–1)with outstanding cycling stability(92.5%retention over 1400 cycles at 1.0 A·g^(–1)).