期刊文献+
共找到7,056篇文章
< 1 2 250 >
每页显示 20 50 100
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
1
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Intrinsic pentagon defect engineering in multiple spatial-scale carbon frameworks for efficient triiodide reduction
2
作者 Siyi Hou Xuedan Song +6 位作者 Chang Yu Jiangwei Chang Yiwang Ding Yingbin Liu Xiubo Zhang Weizhe Liu Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期20-28,I0002,共10页
Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topologi... Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topological defects in carbon frameworks to reveal the relationship between reactivity and defect structure remains a challenging task.Herein,the intrinsic pentagon carbon sites that can favor electron overflow and enhance their binding affinity towards the intermediates of catalytic reaction are firstly presented by the work function and the p-band center calculations.To experimentally verify this,the cage-opening reaction of fullerene is proposed and utilized for synthesizing carbon quantum dots with specific pentagon configuration(CQDs-P),subsequently utilizing CQDs-P to modulate the micro-scale defect density of three-dimensional reduced graphene oxide(rGO)viaπ-πinteractions.The multiple spatial-scale rGO-conjugated CQDs-P structure simultaneously possesses abundant pentagon and edge defects as catalytic active sites and long-range-orderedπelectron delocalization system as conductive network.The defects-rich CQDs-P/rGO-4 all-carbon-based catalyst exhibits superb catalytic activity for triiodide reduction reaction with a high photoelectric conversion efficiency of 8.40%,superior to the Pt reference(7.97%).Theoretical calculations suggest that pentagon defects in the carbon frameworks can promote charge transfer and modulate the adsorption/dissociation behavior of the reaction intermediates,thus enhancing the electrocatalytic activity of the catalyst.This work confirms the role of intrinsic pentagon defects in catalytic reactions and provides a new insight into the synthesis of defects-rich carbon catalysts. 展开更多
关键词 Defect engineering Pentagon carbon Carbon quantum dots Electrocatalytic activity Triiodide reduction
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
3
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman Overall water splitting
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
4
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
Research status, hot spots, difficulties and future development direction of microbial geoengineering
5
作者 Yingxin Zhou Zhiqing Li +4 位作者 Peng Zhang Qi Wang Weilin Pan Shuangjiao Wang Xiongyao Xie 《Journal of Road Engineering》 2024年第2期234-255,共22页
Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to ... Microbial geoengineering technology,as a new eco-friendly rock and soil improvement and reinforcement technology,has a wide application prospect.However,this technology still has many deficiencies and is difficult to achieve efficient curing,which has become the bottleneck of large-scale field application.This paper reviews the research status,hot spots,difficulties and future development direction microbial induced calcium carbonate precipitation(MICP)technology.The principle of solidification and the physical and mechanical properties of improved rock and soil are systematically summarized.The solidification efficiency is mainly affected by the reactant itself and the external environment.At present,the MICP technology has been preliminarily applied in the fields of soil solidification,crack repair,anti-seepage treatment,pollution repair and microbial cement.However,the technology is currently mainly limited to the laboratory level due to the difficulty of homogeneous mineralization,uneconomical reactants,short microbial activity period and large environmental interference,incidental toxicity of metabolites and poor field application.Future directions include improving the uniformity of mineralization by improving grouting methods,improving urease persistence by improving urease activity,and improving the adaptability of bacteria to the environment by optimizing bacterial species.Finally,the authors point out the economic advantages of combining soybean peptone,soybean meal and cottonseed as carbon source with phosphogypsum as calcium source to induce CaCO3. 展开更多
关键词 Microbial geoengineering Microbial induced calcium carbonate PRECIPITATION Bacillus pasteurii UREASE PHOSPHOGYPSUM
下载PDF
Inheritance and Practice of Chinese Traditional Flower Arrangement——A Case Study of Huizhou Engineering Vocational College
6
作者 Zhang Yunyi Ma Xiaoyong +1 位作者 Yang Lihua Lin Xiulian 《Plant Diseases and Pests》 CAS 2019年第4期36-38,共3页
Taking Huizhou Engineering Vocational College as an example,the inheritance and practice of Chinese traditional flower arrangement was expounded from three aspects of base and achievements,prospects,appreciation and a... Taking Huizhou Engineering Vocational College as an example,the inheritance and practice of Chinese traditional flower arrangement was expounded from three aspects of base and achievements,prospects,appreciation and analysis of teacher's works. 展开更多
关键词 Chinese TRADITIONAL FLOWER arrangement INHERITANCE PRACTICE
下载PDF
Ethical Research on Agriculture-related Higher Vocational Colleges Serving Rural Revitalization:A Case Study of Huizhou Engineering Vocational College
7
作者 Xiulian LIN Xiaoling WANG +1 位作者 Junhong ZHONG Min ZHAO 《Asian Agricultural Research》 2022年第10期48-50,共3页
At first,the ethical dilemmas of rural revitalization and the present situation of ethics in agriculture-related vocational education were analyzed,and then the ethical dilemmas of agriculture-related vocational educa... At first,the ethical dilemmas of rural revitalization and the present situation of ethics in agriculture-related vocational education were analyzed,and then the ethical dilemmas of agriculture-related vocational education serving rural revitalization were studied.Finally,some ethical countermeasures for the dilemmas were proposed to provide reference for the research related to rural revitalization. 展开更多
关键词 RURAL REVITALIZATION ETHICAL research Agriculture-related vocational education
下载PDF
Lithiation-induced controllable vacancy engineering for developing highly active Ni_(3)Se_(2) as a high-rate and large-capacity battery-type cathode in hybrid supercapacitors
8
作者 Yinna He Ting Liu +8 位作者 Jiangnan Song Yiwei Wang Yuxiao Zhang Jie Feng Alan Meng Guicun Li Lei Wang Jian Zhao Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期37-46,I0002,共11页
The poor rate capability and low capacity are huge barriers to realize the commercial applications of battery-type transition metal compounds(TMCs) cathode.Herein,numerous Se vacancy defects are introduced into the Ni... The poor rate capability and low capacity are huge barriers to realize the commercial applications of battery-type transition metal compounds(TMCs) cathode.Herein,numerous Se vacancy defects are introduced into the Ni_(3)Se_(2)lamellas by pre-lithiation technique,which can be acted as a novel class of battery-type cathode for hybrid supercapacitors.Appropriately modulating the contents of the preembedded lithium(Li) ions can induce a controllable vacancy content in the series of as-prepared products,effectively endowing a fast reaction kinetic and high activity for the cathode.Benefiting from the distinct design,the optimized cathode(Li2-Ni_(3)Se_(2)) presents a high specific capacity of 236 mA h g^(-1)at1 A g^(-1),importantly,it can still possess 117 mA h g^(-1)when the current density is increased up to 100A g^(-1),exhibiting relatively high rate capability.It is much superior to other battery-type TMC cathodes reported in previous studies.Moreover,the cathode also shows the excellent cycling stability with 92%capacity retention after 3,000 cycles.In addition,a hybrid supercapacitor(HSC) is assembled with the obtained Li2-Ni_(3)Se_(2)as the cathode and active carbon(AC) as the anode,which delivers a high energy density of 77 W h kg^(-1)at 4 kW kg^(-1)and long-term durability(90% capacitance retention after 10,000 cycles).Therefore,the strategy not only provides an effective way to realize the controllable vacancy content in TMCs for achieving high-perfo rmance cathodes for HSC,but also further promotes their large-scale applications in the energy storage fields. 展开更多
关键词 Pre-lithiation Selenium vacancies High-rate Battery-type cathode Hybrid supercapacitor
下载PDF
Application of BIM + Virtual Simulation Technology in Road Engineering Construction Technology and Organization Course
9
作者 Taotao Gao Liming Zhao Jun Lin 《Journal of Contemporary Educational Research》 2023年第6期12-17,共6页
We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use... We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use the advantages of BIM+virtual simulation technology,design a scientific and reasonable practical teaching content of Road Engineering Construction Technology and Organization,and address the contrast between the strong practical aspect of the traditional Road Engineering Construction Technology and Organization course and the lack of practical instruments in hope to improve students’learning autonomy,enhance the quality of practical teaching,achieve the training objectives of the course,and nurture applied technical talents. 展开更多
关键词 BIM+virtual simulation technology Road Engineering Construction Technology and Organization Course content integration and implementation
下载PDF
Compositional engineering of HKUST-1/sulfidized NiMn-LDH on functionalized MWCNTs as remarkable bifunctional electrocatalysts for water splitting
10
作者 Mengshan Chen Reza Abazari +6 位作者 Soheila Sanati Jing Chen Mingyuzhi Sun Cunhong Bai Alexander M.Kirillov Yingtang Zhou Guangzhi Hu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期1-20,共20页
Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop nove... Water-splitting reactions such as the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)typically require expensive noble metal-based electrocatalysts.This has motivated researchers to develop novel,cost-effective electrocatalytic systems.In this study,a new multicomponent nanocomposite was assembled by combining functionalized multiwalled carbon nanotubes,a Cu-based metal–organic framework(MOF)(HKUST-1 or HK),and a sulfidized NiMn-layered double hydroxide(NiMn-S).The resulting nanocomposite,abbreviated as MW/HK/NiMn-S,features a unique architecture,high porosity,numerous electroactive Cu/Ni/Mn sites,fast charge transfer,excellent structural stability,and conductivity.At a current density of 10 mA cm-2,this dual-function electrocatalyst shows remarkable performance,with ultralow overpotential values of 163 mV(OER)or 73 mV(HER),as well as low Tafel slopes(57 and 75 mV dec-1,respectively).Additionally,its high turnover frequency values(4.43 s-1 for OER;3.96 s-1 for HER)are significantly superior to those of standard noble metal-based Pt/C and IrO2 systems.The synergistic effect of the nanocomposite's different components is responsible for its enhanced electrocatalytic performance.A density functional theory study revealed that the multi-interface and multicomponent heterostructure contribute to increased electrical conductivity and decreased energy barrier,resulting in superior electrocatalytic HER/OER activity.This study presents a novel vision for designing advanced electrocatalysts with superior performance in water splitting.Various composites have been utilized in water-splitting applications.This study investigates the use of the MW/HK/NiMn-S electrocatalyst for water splitting for the first time to indicate the synergistic effect between carbon-based materials along with layered double hydroxide compounds and porous compounds of MOF.The unique features of each component in this composite can be an interesting topic in the field of water splitting. 展开更多
关键词 bifunctional electrocatalyst electroactive sites MULTICOMPONENT synergic effect water splitting
下载PDF
Surviving the shift: College student satisfaction with emergency online learning during COVID-19 pandemic
11
作者 Xiao-Yan Zhai Dong-Chuan Lei +5 位作者 Yan Zhao Peng Jing Kun Zhang Ji-Ting Han Ai-Hua Ni Xue-Yi Wang 《World Journal of Psychiatry》 SCIE 2023年第12期1106-1120,共15页
BACKGROUND The coronavirus disease 2019(COVID-19)epidemic disrupted education systems by forcing systems to shift to emergency online leaning.Online learning satisfaction affects academic achievement.Many factors affe... BACKGROUND The coronavirus disease 2019(COVID-19)epidemic disrupted education systems by forcing systems to shift to emergency online leaning.Online learning satisfaction affects academic achievement.Many factors affect online learning satisfaction.However there is little study focused on personal characteristics,mental status,and coping style when college students participated in emergency online courses.regression analyses were performed to identify factors that affected online learning satisfaction.RESULTS Descriptive findings indicated that 62.9%(994/1580)of students were satisfied with online learning.Factors that had significant positive effects on online learning satisfaction were online learning at scheduled times,strong exercise intensity,good health,regular schedule,focusing on the epidemic less than one hour a day,and maintaining emotional stability.Positive coping styles were protective factors of online learning satisfaction.Risk factors for poor satisfaction were depression,neurasthenia,and negative coping style.CONCLUSION College students with different personal characteristics,mental status,and coping style exhibited different degrees of online learning satisfaction.Our findings provide reference for educators,psychologists,and school adminis-trators to conduct health education intervention of college students during emergency online learning. 展开更多
关键词 COVID-19 Emergency online leaning Online learning satisfaction College students Mental status Coping style Distance education Psychiatric status
下载PDF
Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources 被引量:1
12
作者 Peng Jiang Guanhan Zhao +4 位作者 Hao Zhang Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1068-1078,共11页
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a... Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier. 展开更多
关键词 Biomass pyrolysis CO_(2)mitigation Calcium carbide ACETYLENE Calcium loop
下载PDF
Comparison between ozonesonde measurements and satellite retrievals over Beijing,China 被引量:1
13
作者 Jinqiang Zhang Yuejian Xuan +5 位作者 Jianchun Bian Holger Vomel Yunshu Zeng Zhixuan Bai Dan Li Hongbin Chen 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第1期14-20,共7页
从2013年开始,作者团队使用自主研发电化学原理臭氧探空仪在华北平原北京地区进行每周一次观测.本研究首次使用2013-2019年期间北京地区臭氧探空数据评估Aqua卫星搭载大气红外探测仪(AIRS)和Aura卫星搭载微波临边探测器(MLS)反演垂直臭... 从2013年开始,作者团队使用自主研发电化学原理臭氧探空仪在华北平原北京地区进行每周一次观测.本研究首次使用2013-2019年期间北京地区臭氧探空数据评估Aqua卫星搭载大气红外探测仪(AIRS)和Aura卫星搭载微波临边探测器(MLS)反演垂直臭氧廓线,并对比臭氧探空,AIRS和Aura卫星搭载臭氧监测仪(OMI)臭氧柱总量结果.尽管臭氧探空与卫星反演垂直臭氧廓线在局部高度处差异较大,但整体来说两者较为接近(相对偏差大多<10%).臭氧探空,AIRS和OMI三种仪器测量臭氧柱总量的年变化特征较为一致,其年均臭氧柱总量分别为351.8±18.4 DU,348.8±19.5 DU和336.9±14.2 DU.后续对国内多站点观测数据分析将有助于进一步理解臭氧探空与卫星反演臭氧资料在不同区域的一致性. 展开更多
关键词 臭氧探空 卫星反演 垂直臭氧廓线 臭氧柱总量 华北平原
下载PDF
Thermo-hydro-mechanical (THM) coupled simulation of the land subsidence due to aquifer thermal energy storage (ATES) system in soft soils 被引量:1
14
作者 Yang Wang Fengshou Zhang Fang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1952-1966,共15页
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o... Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils. 展开更多
关键词 Aquifer thermal energy storage(ATES) Land subsidence TOUGH-FLAC3D Thermo-elastoplastic constitutive model
下载PDF
Multiscale modeling of gas-induced fracturing in anisotropic clayey rocks 被引量:1
15
作者 Jianxiong Yang Jianfeng Liu +2 位作者 Zhengyuan Qin Xuhai Tang Houquan Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2091-2110,共20页
In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The prim... In the context of repositories for nuclear waste,understanding the behavior of gas migration through clayey rocks with inherent anisotropy is crucial for assessing the safety of geological disposal facilities.The primary mechanism for gas breakthrough is the opening of micro-fractures due to high gas pressure.This occurs at gas pressures lower than the combined strength of the rock and its minimum principal stress under external loading conditions.To investigate the mechanism of microscale mode-I ruptures,it is essential to incorporate a multiscale approach that includes subcritical microcracks in the modeling framework.In this contribution,we derive the model from microstructures that contain periodically distributed microcracks within a porous material.The damage evolution law is coupled with the macroscopic poroelastic system by employing the asymptotic homogenization method and considering the inherent hydro-mechanical(HM)anisotropy at the microscale.The resulting permeability change induced by fracture opening is implicitly integrated into the gas flow equation.Verification examples are presented to validate the developed model step by step.An analysis of local macroscopic response is undertaken to underscore the influence of factors such as strain rate,initial damage,and applied stress,on the gas migration process.Numerical examples of direct tension tests are used to demonstrate the model’s efficacy in describing localized failure characteristics.Finally,the simulation results for preferential gas flow reveal the robustness of the two-scale model in explicitly depicting gas-induced fracturing in anisotropic clayey rocks.The model successfully captures the common behaviors observed in laboratory experiments,such as a sudden drop in gas injection pressure,rapid build-up of downstream gas pressure,and steady-state gas flow following gas breakthrough. 展开更多
关键词 Deep geological repositories Mode-I microcracks Time-dependent damage Fracturing process Anisotropic rock
下载PDF
Deformation characteristics and damage ontologies of soft and hard composite rock masses under impact loading
16
作者 LI Jinhua ZHANG Tianyu +3 位作者 WU Baolin SU Peili YANG Yang WANG Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1715-1727,共13页
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ... As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load. 展开更多
关键词 Soft and hard composite rock mass Dynamic properties Split Hopkinson pressure bar(SHPB) Numerical simulation Intrinsic damage model
下载PDF
Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
17
作者 杨刚 郑庭 +1 位作者 程启昊 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期516-525,共10页
Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear... Shear-thinning fluids have been widely used in microfluidic systems,but their internal flow mechanism is still unclear.Therefore,in this paper,molecular dynamics simulations are used to study the laminar flow of shear-thinning fluid in a microchannel.We validated the feasibility of our simulation method by evaluating the mean square displacement and Reynolds number of the solution layers.The results show that the change rule of the fluid system's velocity profile and interaction energy can reflect the shear-thinning characteristics of the fluids.The velocity profile resembles a top-hat shape,intensifying as the fluid's power law index decreases.The interaction energy between the wall and the fluid decreases gradually with increasing velocity,and a high concentration of non-Newtonian fluid reaches a plateau sooner.Moreover,the velocity profile of the fluid is related to the molecule number density distribution and their values are inversely proportional.By analyzing the radial distribution function,we found that the hydrogen bonds between solute and water molecules weaken with the increase in velocity.This observation offers an explanation for the shear-thinning phenomenon of the non-Newtonian flow from a micro perspective. 展开更多
关键词 molecular dynamics simulation non-Newtonian fluid MICROCHANNEL SHEAR-THINNING
下载PDF
Optimizing extractants selection for efficient separation of phenols and nitrogen-containing heteroaromatics using hydrogen bond interaction strategies
18
作者 Pengzhi Bei Rui Zhang +2 位作者 Jie Feng Antony Rajendran Wenying Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期43-52,共10页
Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific... Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds. 展开更多
关键词 Deep eutectic solvents Hydrogen bond Ionic liquids SEPARATION Solvents Structural characteristics
下载PDF
Interaction Mechanisms between Natural Debris Flow and Rigid Barrier Deflectors:A New Perspective for Rational Design and Optimal Arrangement
19
作者 Yu Huang Beilei Liu +1 位作者 Dianlei Feng Hao Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1679-1699,共21页
Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflector... Rigid barrier deflectors can effectively prevent overspilling landslides,and can satisfy disaster prevention requirements.However,the mechanisms of interaction between natural granular flow and rigid barrier deflectors require further investigation.To date,few studies have investigated the impact of deflectors on controlling viscous debris flows for geological disaster prevention.To investigate the effect of rigid barrier deflectors on impact mechanisms,a numerical model using the smoothed particle hydrodynamics(SPH)method with the Herschel–Bulkley model is proposed to simulate the interaction between natural viscous flow and single/dual barriers with and without deflectors.This model was validated using laboratory flume test data from the literature.Then,the model was used to investigate the influence of the deflector angle and multi-barrier arrangements.The optimal configuration of multi-barriers was analyzed with consideration to the barrier height and distance between the barriers,because these metrics have a significant impact on the viscous flow pile-up,run-up,and overflow mechanisms.The investigation considered the energy dissipation process,retention efficiency,and dead-zone formation.Compared with bare barriers with similar geometric characteristics and spatial distribution,rigid barriers with deflectors exhibit superior effectiveness in preventing the overflow and overspilling of viscous debris flow.Recommendations for the rational design of deflectors and the optimal arrangement of multi-barriers are provided to mitigate geological disasters. 展开更多
关键词 Rigid barrier deflectors deflector angle single-barrier dual-barrier arrangements viscous debris flow over-spilling delta-plus-SPH
下载PDF
Tidal modeling based on satellite altimetry observations of TOPEX/ Poseidon, Jason1, Jason2, and Jason3 with high prediction capability: A case study of the Baltic Sea
20
作者 Alireza A.Ardalan Asiyeh Hashemifaraz 《Geodesy and Geodynamics》 EI CSCD 2024年第4期404-418,共15页
This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations a... This research aims to optimize the utilization of long-term sea level data from the TOPEX/Poseidon,Jason1,Jason2,and Jason3 altimetry missions for tidal modeling.We generate a time series of along-track observations and apply a developed method to produce tidal models with specific tidal constituents for each location.Our tidal modeling methodology follows an iterative process:partitioning sea surface height(SSH)observations into analysis/training and prediction/validation parts and ultimately identi-fying the set of tidal constituents that provide the best predictions at each time series location.The study focuses on developing 1256 time series along the altimetry tracks over the Baltic Sea,each with its own set of tidal constituents.Verification of the developed tidal models against the sSH observations within the prediction/validation part reveals mean absolute error(MAE)values ranging from 0.0334 m to 0.1349 m,with an average MAE of 0.089 m.The same validation process is conducted on the FES2014 and EOT20 global tidal models,demonstrating that our tidal model,referred to as BT23(short for Baltic Tide 2023),outperforms both models with an average MAE improvement of 0.0417 m and 0.0346 m,respectively.In addition to providing details on the development of the time series and the tidal modeling procedure,we offer the 1256 along-track time series and their associated tidal models as supplementary materials.We encourage the satellite altimetry community to utilize these resources for further research and applications. 展开更多
关键词 Satellitealtimetry Baltic Sea Ocean tide modeling Jason3 Jason2 Jason1 TOPEX/POSEIDON EOT20 FES2014
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部