期刊文献+
共找到11,639篇文章
< 1 2 250 >
每页显示 20 50 100
Pars plana vitrectomy for retinal detachment using perfluoro-n-octane as intraoperative tamponade:a multicenter,randomized,non-inferiority trial
1
作者 Xin Shi Wei-Jun Wang +7 位作者 Ying Fan Hai-Yun Liu Hong Wang Yu-Hui Chen Ao Rong Zhi-Feng Wu Xun Xu Kun Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期82-91,共10页
AIM:To evaluate the efficacy and safety of perfluoro-n-octane(PFO)for ophthalmic surgery versus F-Octane as an intraoperative tamponade in pars plana vitrectomy(PPV)in management of retinal detachment.METHODS:This mul... AIM:To evaluate the efficacy and safety of perfluoro-n-octane(PFO)for ophthalmic surgery versus F-Octane as an intraoperative tamponade in pars plana vitrectomy(PPV)in management of retinal detachment.METHODS:This multicenter,prospective,randomized,double-masked,parallel-controlled,non-inferiority trial was conducted in three ophthalmology clinical centers in China.Patients with retinal detachment,who were eligible for PPV were consecutively enrolled.Participants were assigned to PFO for ophthalmic surgery or F-Octane for intraocular tamponade in a 1:1 ratio.Best-corrected visual acuity(BCVA),intraocular pressure(IOP)measurement,and dilated fundus examination were performed preoperatively and at 1,7±1,28±3d postoperatively.The primary outcome was complete retinal reattachment rate at postoperative day one.The non-inferiority margin was set at 9.8%.The secondary outcomes included intraoperative retinal reattachment rate,and mean changes in IOP and BCVA from baseline to 1,7±1,28±3d postoperatively,respectively.Safety analyses were presented for all randomly assigned participates in this study.RESULTS:Totally 124 eligible patients completed the study between Mar.14,2016 and Jun.7,2017.Sixty of them were randomly assigned to the PFO for ophthalmic surgery group,and 64 were assigned to the F-Octane group.Baseline characteristics were comparable between the two groups.Both groups achieved 100%retinal reattachment at postoperative day one(difference 0,95%CI:-6.21%to 5.75%,P=1).The pre-defined noninferiority criterion was met.No significant difference was observed in intraoperative retinal reattachment rate(difference 1.77%,P=0.61),mean changes in IOP(difference 0.36,-0.09,2.22 mm Hg at 1,7±1,28±3d postoperatively,with all P>0.05)and BCVA(difference 0.04,-0.02,0.06 logMAR at 1,7±1,28±3d postoperatively,all P>0.05)between the two groups.No apparent adverse events related to the utilization of PFO were reported.CONCLUSION:In patients with retinal detachment undergoing PPV,PFO for ophthalmic surgery is non-inferior to F-Octane as an intraocular tamponade,and both are safe and well-tolerated. 展开更多
关键词 perfluoro-n-octane vitreoretinal surgery intraocular tamponade ophthalmic surgery retinal detachment
下载PDF
Engineering fibrillar morphology for highly efficient organic solar cells
2
作者 Chengcheng Xie Bin Zhang +1 位作者 Menglan Lv Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期7-9,共3页
The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advan... The power conversion efficiency(PCE)for single-junction organic solar cells(OSCs),wherein the photoactive layer is a typical bulk-heterojunction containing donor and acceptor materials,has surpassed 19%[1−4].The advance is ascribed to the development of Y-series non-fullerene acceptors(NFAs)[5,6]and polymer donors[7−13],and the refined control of the blend film morphology. 展开更多
关键词 MORPHOLOGY refined DONOR
下载PDF
Application Strategies of Shotcrete Anchor Support Technology in Highway Bridge and Tunnel Engineering
3
作者 Ruiquan Liu 《Journal of Architectural Research and Development》 2024年第1期56-61,共6页
This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan for... This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction. 展开更多
关键词 Highway bridge engineering Tunnel construction Shotcrete support Support plan Support construction
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration
4
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOMATERIALS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
Phase engineering of Ni-Mn binary layered oxide cathodes for sodiumion batteries
5
作者 Feifei Hong Xin Zhou +9 位作者 Xiaohong Liu Guilin Feng Heng Zhang Weifeng Fan Bin Zhang Meihua Zuo Wangyan Xing Ping Zhang Hua Yan Wei Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期501-511,共11页
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Dive... Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries,but their electrochemical properties are highly related to compositional diversity.Diverse composite materials with various phase structures of P3,P2/P3,P2,P2/O3,and P2/P3/O3 were synthesized by manipulating the sodium content and calcination conditions,leading to the construction of a synthetic phase diagram for Na_(x)Ni_(0.25)Mn_(0.75)O_(2)(0.45≤x≤1.1).Then,we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2,P2/P3,P2/03,and P2/P3/O3-Na_(x)Ni_(0.25)Mn_(0.75)O_(2).Among them,P2/P3-Na0.75Ni0.25Mn0.75O2exhibits the best rate capability of 90.9 mA h g^(-1)at 5 C,with an initial discharge capacity of 142.62 mA h g^(-1)at 0.1 C and a capacity retention rate of 78.25%after 100 cycles at 1 C in the voltage range of 2-4.3 V.The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na^(+)transfer dynamic,reduction of the Jahn-teller effect,and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases.The systematic research and exploration of phases in Na_(x)Ni_(0.25)Mn_(0.75)O_(2)provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries. 展开更多
关键词 Phase engineering Ni-Mn layered oxide CATHODE Sodium-ion batteries
下载PDF
Biomimetic natural biomaterials for tissue engineering and regenerative medicine:new biosynthesis methods,recent advances,and emerging applications
6
作者 Shuai Liu Jiang-Ming Yu +11 位作者 Yan-Chang Gan Xiao-Zhong Qiu Zhe-Chen Gao Huan Wang Shi-Xuan Chen Yuan Xiong Guo-Hui Liu Si-En Lin Alec McCarthy Johnson V.John Dai-Xu Wei Hong-Hao Hou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期50-79,共30页
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas... Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field. 展开更多
关键词 Biomimic SCAFFOLD BIOSYNTHESIS Natural biomaterial Tissue engineering
下载PDF
Translational bioengineering strategies for peripheral nerve regeneration:opportunities,challenges,and novel concepts 被引量:1
7
作者 Karim A.Sarhane Chenhu Qiu +3 位作者 Thomas G.W.Harris Philip J.Hanwright Hai-Quan Mao Sami H.Tuffaha 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1229-1234,共6页
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,de... Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy. 展开更多
关键词 BIOENGINEERING BIOMATERIALS growth hormone insulin-like growth factor 1 NANOTECHNOLOGY NEUROBIOLOGY peripheral nerve regeneration Schwann cells translational research
下载PDF
Defect engineering of ternary Cu-In-Se quantum dots for boosting photoelectrochemical hydrogen generation 被引量:1
8
作者 Shi Li Sung-Mok Jung +10 位作者 Wookjin Chung Joo-Won Seo Hwapyong Kim Soo Ik Park Hyo Cheol Lee Ji Su Han Seung Beom Ha In Young Kim Su-Il In Jae-Yup Kim Jiwoong Yang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期215-228,共14页
Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly aff... Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation. 展开更多
关键词 copper-indium-selenide defect engineering photoelectrochemical hydrogen generation quantum dots solar hydrogen
下载PDF
Sir Run Run Shaw Hospital leads the establishment of the first National Engineering Research Center in the field of minimally invasive medicine in China
9
作者 Qingjie Zeng Xinyi Wu Yifan Wang 《Laparoscopic, Endoscopic and Robotic Surgery》 2022年第4期161-162,共2页
With the rapid development of science and technology,the minimally invasive surgery(MIS)has become a reality.MIS is associated with less pain,a shorter hospital stay and fewer complications.The higher-quality minimall... With the rapid development of science and technology,the minimally invasive surgery(MIS)has become a reality.MIS is associated with less pain,a shorter hospital stay and fewer complications.The higher-quality minimally invasive instruments allow the surgeons to perform the surgical interventions efficiently without sacrificing patient safety.Therefore,the academic research,technology development,achievement transformation as well as clinical application of minimally invasive devices is extremely important。 展开更多
关键词 MINIMAL INVASIVE shorter
下载PDF
Oxygen vacancy defects engineering on Cu-doped Co_(3)O_(4) for promoting effective COS hydrolysis
10
作者 Guanyu Mu Yan Zeng +5 位作者 Yong Zheng Yanning Cao Fujian Liu Shijing Liang Yingying Zhan Lilong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期831-841,共11页
The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of... The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process. 展开更多
关键词 Oxygen vacancy COS hydrolysis In situ spectra Cu doped Co_(3)O_(4)
下载PDF
Erratum to: Experimental Study on the Wavelengths of Two-Dimensional and Three-Dimensional Freak Waves [China Ocean Engineering, 2023, 37(1), 154−164. https://doi.org/10.1007/s13344-023-0013-7]
11
作者 CUI Cheng PAN Wen-bo 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期353-353,共1页
In the original publication of the article(Cui and Pan,2023),the organization“National Engineering Research Center for Port Hydraulic Construction Technology,M.O.T.,Tianjin Research Institute of Water Transport Engin... In the original publication of the article(Cui and Pan,2023),the organization“National Engineering Research Center for Port Hydraulic Construction Technology,M.O.T.,Tianjin Research Institute of Water Transport Engineering,Tianjin 300456,China”should be corrected as:“National Engineering Research Center of Port Hydraulic Construction Technology,Tianjin Research Institute for Water Transport Engineering,M.O.T.,Tianjin 300456,China”. 展开更多
关键词 TIANJIN (1) corrected
下载PDF
Engineering of Ag@Pd/Al_(2)O_(3)with varied Pd-shell thickness:Dynamic evolution of ligand and strain effects on acetylene selective hydrogenation
12
作者 Mingbo Yang Tianxing Yang +3 位作者 Rui Ma Sha Li Yufei He Dianqing Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期139-148,共10页
Bimetallic nanoparticles exhibit a synergistic effect that critically depends on their surface composition,but such promotion mechanisms become vague with varying surface compositions.Here,alumina supported Ag@Pd core... Bimetallic nanoparticles exhibit a synergistic effect that critically depends on their surface composition,but such promotion mechanisms become vague with varying surface compositions.Here,alumina supported Ag@Pd core–shell and PdAg alloy structure with controlled size and surface compositions were prepared to demonstrate synergetic mechanisms,particularly,ligand and strain effects on activity and ethylene selectivity for acetylene hydrogenation.The performance evaluation indicates that Ag@Pd catalysts with well-controlled Pd-shell thickness can effectively lower apparent activation energy and improve ethylene selectivity.Hydrogenation activity increases from 0.019 to 0.062 s^(-1) with decreasing Pd-shell thickness under mild conditions,which is 3–6 times higher than their alloyed and monometallic counterparts.Combined characterizations and density functional theory are conducted to reveal such shell-thickness-dependent performance.The ligand effect arising from Ag alloying in the interface of Ag@Pd2ML observes the strongest binding of acetylene,but it diminished sharply and the strain effect gets more prevailing with increasing shell thickness.The competition of ethylene desorption and deephydrogenation were also investigated to understand the selectivity governing factors,and the selectivity descriptor(0.5BE(C_(2)H_(4))–BE(H))was built to match the contribution of ligand and strain effect on the different surfaces of Pd-Ag bimetallic NPs.The exploration of synergetic mechanisms among bimetallic NPs with varied structure and surface compositions in this work can help us to deepen the understanding catalyst structure–activity relationship and provide a feasible way to optimize the overall catalytic performance. 展开更多
关键词 Catalyst HYDROGENATION NANOSTRUCTURE Shell-thickness-dependent performance Ligand and strain effect
下载PDF
3D/4D printed bio-piezoelectric smart scaffolds for next-generation bone tissue engineering 被引量:2
13
作者 Annan Chen Jin Su +4 位作者 Yinjin Li Haibo Zhang Yusheng Shi Chunze Yan Jian Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期236-262,共27页
Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ... Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants. 展开更多
关键词 3D/4D printing bio-piezoelectric materials biomimetic scaffolds electrical microenvironment bone regeneration
下载PDF
Configuration Design and Kinematic Performance Analysis of a Novel 4-DOF Parallel Ankle Rehabilitation Mechanism with Two Virtual Motion Centers
14
作者 Jingke Song Jun Wei +3 位作者 Bin Yu Chenglei Liu Cunjin Ai Jianjun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期87-104,共18页
Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model... Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model that is highly matched with the actual bone structure of the human ankle joint is proposed and mapped into a parallel rehabilita-tion mechanism.The parallel rehabilitation mechanism has two virtual motion centers(VMCs),which can simulate the complex motion of the ankle joint,adapt to the individual differences of various patients,and can meet the reha-bilitation needs of both left and right feet of patients.Firstly,based on the motion properties and physiological structure of the human ankle joint,the mapping relationship between the rehabilitation mechanism and ankle joint is determined,and the series equivalent model of the ankle joint is established.According to the kinematic and con-straint properties of the ankle equivalent model,the configuration design of the parallel ankle rehabilitation robot is carried out.Secondly,according to the intersecting motion planes theory,the full-cycle mobility of the mechanism is proved,and the continuous axis of the mechanism is judged based on the constraint power and its derivative.Then,the kinematics of the parallel ankle rehabilitation robot is analyzed.Finally,based on the OpenSim biomechanical soft-ware,a human-machine coupling rehabilitation simulation model is established to evaluate the rehabilitation effect,which lays the foundation for the formulation of a rehabilitation strategy for the later prototype. 展开更多
关键词 Ankle rehabilitation robot Double-VMCs mechanism Kinematic performance Human-machine rehabilitation simulation
下载PDF
A novel cerebrovascular drug-coated balloon catheter for treating symptomatic intracranial atherosclerotic stenosis lesions:Study protocol for a prospective,multicenter,single-arm,target-value clinical trial
15
作者 Qianhao Ding Wenbo Liu +10 位作者 Jingge Zhao Dehua Guo Yao Tang Tengfei Zhou Yanyan He Ferdinand K.Hui Yonghong Ding Liangfu Zhu Zilang Wang Yingkun He Tianxiao Li 《Journal of Interventional Medicine》 2023年第4期179-185,共7页
Background:Previous single-center studies have demonstrated that drug-coated balloons(DCBs)may reduce restenosis rates,which is an important factor affecting the prognosis for intracranial interventional therapy.Howev... Background:Previous single-center studies have demonstrated that drug-coated balloons(DCBs)may reduce restenosis rates,which is an important factor affecting the prognosis for intracranial interventional therapy.However,currently available cardiac DCBs are not always suitable for the treatment of intracranial atherosclerotic stenosis(ICAS).This study aimed to evaluate the safety and efficacy of a novel DCB catheter designed for patients with severely symptomatic ICAS.Methods:This prospective,multicenter,single-arm,target-value clinical trial was conducted in 9 Chinese stroke centers to evaluate the safety and efficacy of a novel DCB catheter for treating symptomatic severe ICAS.Primary metrics and other indicators were collected and analyzed using SAS version 9.4(SAS Institute,Cary,NC,USA).Results:A total of 155 patients were enrolled in this study.The preliminary collection of follow-up data has been completed,while data quality control is ongoing.Conclusion:Results of this study demonstrated the patency rate,safety,and effectiveness of a novel on-label paclitaxel DCB designed for the treatment of ICAS.Ethics and dissemination:This study,involving human participants,was reviewed and approved by the Ethics Committee of Drugs(Devices)Clinical Experiment at Henan Provincial People’s Hospital(reference number:2020-145-03)and other research centers participating in the clinical trial.The results of this study will be presented at international conferences and sent to peer-reviewed journals for publication.Standard protocol items:The Recommendations for Interventional Trials checklist was used when drafting the study protocol.Trial registration number:Registered with the Chinese Clinical Trial Registry on June 11,2021(Chi CTR2100047223). 展开更多
关键词 Intracranial arterial stenosis Drug-coated balloon Ischemic stroke Transient ischemic attack Endovascular therapy
下载PDF
The Nest of Torquigener Albomaculosus:Fluid-Dynamic Aspects and Potential for Bio-Inspired Engineering
16
作者 Zhimin Zhao Shangbin Wang +1 位作者 Yuanhao Tie Ning Feng 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1837-1850,共14页
Torquigener albomaculosus,also known as the white-spotted pufferfish,is known for creating circular nests in the underwater sand as part of the mating ritual.The nests are built by the males to attract females through... Torquigener albomaculosus,also known as the white-spotted pufferfish,is known for creating circular nests in the underwater sand as part of the mating ritual.The nests are built by the males to attract females through the nest’s impressive design and related ability to gather fine sand particles.As the fluid-dynamic processes associated with these unique nests are still almost completely unknown,in the present study,an analysis has been conducted to investigate how the geometric parameters related to the nest design influence the fluid velocity in its center.For this reason,a geometric model of the nest consisting of 24 channels,where each unit channel can be described by three strips of broken lines,has been introduced,and a multivariate analysis has been implemented to determine the relative weight of each considered parameter.In particular,the“optimal”combination of parameters has been obtained by means of an orthogonal design approach.We show that these bio-nest structures also display a potential for significant application in marine litter collection,or for use as a buffer against the waves in offshore areas. 展开更多
关键词 CFD multivariate fluid analysis optimization mystery circles
下载PDF
Defect engineering of high-loading single-atom catalysts for electrochemical carbon dioxide reduction 被引量:1
17
作者 Yang Li Zhenjiang He +3 位作者 Feixiang Wu Shuangyin Wang Yi Cheng Sanping Jiang 《Materials Reports(Energy)》 2023年第2期124-141,I0003,共19页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed. 展开更多
关键词 Single-atom catalysts High loading ELECTROCATALYSIS Carbon dioxide reduction(CO_(2)RR) Transition metals
下载PDF
Lateral bearing characteristics of subsea wellhead assembly in the hydrate trial production engineering
18
作者 Jing Zeng Wen-wei Xie +8 位作者 Bei-bei Kou Jing-an Lu Xing-chen Li De-jun Cai Hao-xian Shi Ke-wei Zhang Hua-qing Liu Jin Li Bo Li 《China Geology》 CAS CSCD 2023年第3期455-465,共11页
Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction p... Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development. 展开更多
关键词 Natural gas hydrate Deep-water Subsea wellhead Suction anchor Wellhead stability 3D solid finite element method Hydrate trial exploration engineering Natural gas hydrate trial production Shenhu area The South China Sea
下载PDF
Micropore engineering on hollow nanospheres for ultra-stable sodium-selenium batteries
19
作者 Gongke Wang Yumeng Chen +7 位作者 Yu Han Lixue Yang Wenqing Zhao Changrui Chen Zihao Zeng Shuya Lei Shaohui Yuan Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期99-109,I0004,共12页
Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttl... Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttling effect”to S-electrodes.Herein,utilizing uniform hollow carbon spheres as precursors,Se-material is effectively loaded through vapor-infiltration method.Owing to the distribution of optimized pores,the content of microspores could be up to~60%(<2 nm),serving important roles for the physical confinement effect.Meanwhile,the rich oxygen-containing groups and N-elements could be noted,inducing the evolution of electron-moving behaviors.More significantly,assisted by the interfacial C-Se bonds and tiny Se distributions,Se electrodes are activated during cycling.Used as cathodes for Na-Se systems,the as-resulted samples display a capacity of 593.9 mA h g^(-1)after 100 cycles at the current density of 0.1 C.Even after 6000 cycles,the capacity could be still kept at about 225 mA h g^(-1)at 5.0 C.Supported by the detailed kinetic analysis,the designed microspores size induces the increasing redox reaction of nano Se,whilst the surface traits further render the enhancement of pseudo-capacitive contributions.Moreover,after cycling,the product Sex(x<4)in pores serves as the primary active material.Given this,the work is anticipated to provide an effective strategy for advanced electrodes for Na-Se systems. 展开更多
关键词 Carbon host Tailoring pores Heteroatom doping Vapor-infltration method Sodium-selenium batteries
下载PDF
Mechanistic engineering of celastrol liposomes induces ferroptosis and apoptosis by directly targeting VDAC2 in hepatocellular carcinoma
20
作者 Piao Luo Qian Zhang +14 位作者 Shuo Shen Yehai An Lixia Yuan Yin-Kwan Wong Sizhe Huang Shaohui Huang Jingnan Huang Guangqing Cheng Jiahang Tian Yu Chena Xiaoyong Zhang Weiguang Li Songqi He Jigang Wang Qingfeng Du 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第6期157-174,共18页
Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiven... Hepatocellular carcinoma(HCC)is one of most common and deadliest malignancies.Celastrol(Cel),a natural product derived from the Tripterygium wilfordii plant,has been extensively researched for its potential effectiveness in fighting cancer.However,its clinical application has been hindered by the unclear mechanism of action.Here,we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and antitumor capacity by developing a Cel-based liposomes in HCC.We demonstrated that Cel selectively targets the voltage-dependent anion channel 2(VDAC2).Cel directly binds to the cysteine residues of VDAC2,and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore(mPTP)function.We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells.Moreover,coencapsulation of Cel into alkyl glucoside-modified liposomes(AGCL)improved its antitumor efficacy and minimized its side effects.AGCL has been shown to effectively suppress the proliferation of tumor cells.In a xenograft nude mice experiment,AGCL significantly inhibited tumor growth and promoted apoptosis.Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death,while the Cel liposomes enhance its targetability and reduces side effects.Overall,Cel shows promise as a therapeutic agent for HCC. 展开更多
关键词 CELASTROL VDAC2 Ferroptosis APOPTOSIS Hepatocellular carcinoma Liposomes
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部