期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis
1
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide Interface Hydrogen evolution DFT
下载PDF
Recent Advances in In-Memory Computing:Exploring Memristor and Memtransistor Arrays with 2D Materials
2
作者 Hangbo Zhou Sifan Li +1 位作者 Kah-Wee Ang Yong-Wei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期1-30,共30页
The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising altern... The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices. 展开更多
关键词 2D materials MEMRISTORS Memtransistors Crossbar array In-memory computing
下载PDF
Optical scanning endoscope via a single multimode optical fiber
3
作者 Guangxing Wu Runze Zhu +2 位作者 Yanqing Lu Minghui Hong Fei Xu 《Opto-Electronic Science》 2024年第3期1-32,共32页
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm... Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed. 展开更多
关键词 multimode optical fiber ENDOSCOPE scanning imaging FOCUSING wavefront shaping
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management
4
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
下载PDF
Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis 被引量:9
5
作者 Yingjun Wang Zhongyuan Liao +2 位作者 Shengyu Shi Zhenpei Wang Leong Hien Poh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期433-458,共26页
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A... Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches. 展开更多
关键词 DATA-DRIVEN BP neural network petal-shaped auxetics negative Poisson’s ratio structural design isogeometric analysis.
下载PDF
Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption 被引量:5
6
作者 Zhenyuan Lin Kuan Liu +1 位作者 Tun Cao Minghui Hong 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第6期8-17,共10页
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere... Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air. 展开更多
关键词 non-linear effect MICROSPHERE femtosecond laser far field
下载PDF
Additive manufacturing of biodegradable magnesium-based materials:Design strategies,properties,and biomedical applications 被引量:2
7
作者 Farzad Badkoobeh Hossein Mostaan +3 位作者 Mahdi Rafiei Hamid Reza Bakhsheshi-Rad Seeram Rama Krishna Xiongbiao Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期801-839,共39页
Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-b... Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted. 展开更多
关键词 Magnesium alloy Additive manufacturing 3D Printing Bone tissue engineering SCAFFOLD Mechanical and biological properties
下载PDF
Wax from Pyrolysis of Waste Plastics as a Potential Source of Phase Change Material for Thermal Energy Storage 被引量:1
8
作者 Pin Jin Ong Zhi Xiong Jerry Heng +11 位作者 Zhenxiang Xing Hnin Yu Yu Ko Pei Wang Hongfei Liu Rong Ji Xizu Wang Beng Hoon Tan Zibiao Li Jian Wei Xu Xian Jun Loh Enyi Ye Qiang Zhu 《Transactions of Tianjin University》 EI CAS 2023年第3期225-234,共10页
Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyroly... Over the past half-century, plastic consumption has grown rapidly due to its versatility, low cost, and unrivaled functional properties. Among the diff erent implemented strategies for recycling waste plastics, pyrolysis is deemed the most economical option. Currently, the wax obtained from the pyrolysis of waste plastics is mainly used as a feedstock to manufacture chemicals and fuels or added to asphalt for pavement construction, with no other applications of wax being reported. Herein, the thermal pyrolysis of three common waste polyolefin plastics: high-density polyethylene(HDPE), low-density polyethylene(LDPE), and polypropylene(PP), was conducted at 450 ℃. The waste plastics-derived waxes were characterized and studied for a potential new application: phase change materials(PCMs) for thermal energy storage(TES). Gas chromatography–mass spectrometry analysis showed that paraffin makes up most of the composition of HDPE and LDPE waxes, whereas PP wax contains a mixture of naphthene, isoparaffin, olefin, and paraffin. Diff erential scanning calorimetry(DSC) analysis indicated that HDPE and LDPE waxes have a peak melting temperature of 33.8 ℃ and 40.3 ℃, with a relatively high latent heat of 103.2 J/g and 88.3 J/g, respectively, whereas the PP wax was found to have almost negligible latent heat. Fourier transform infrared spectroscopy and DSC results revealed good chemical and thermal stability of HDPE and LDPE waxes after 100 cycles of thermal cycling. Performance evaluation of the waxes was also conducted using a thermal storage pad to understand their thermoregulation characteristics for TES applications. 展开更多
关键词 PYROLYSIS Waste plastics RECYCLING WAX Phase change materials
下载PDF
壳聚糖制备多孔炭及其在电化学超级电容器中的应用(英文) 被引量:11
9
作者 季倩倩 郭培志 赵修松 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第5期1254-1258,共5页
以壳聚糖为原料在 600、700、800和900℃直接炭化制备多孔炭 C-600,C-700, C-800 和C-900,其BET比表面积分别为278、461、515和625 m2·g-1.用恒流充放电和循环伏安法表征了其电化学性能. 结果表明, 由 C-800 制备电极的循环伏安图... 以壳聚糖为原料在 600、700、800和900℃直接炭化制备多孔炭 C-600,C-700, C-800 和C-900,其BET比表面积分别为278、461、515和625 m2·g-1.用恒流充放电和循环伏安法表征了其电化学性能. 结果表明, 由 C-800 制备电极的循环伏安图形更接近矩形, 在恒电流充放电实验中阴极和阳极过程基本对称, 说明该电极具有较好的电容性能.在 50 mA·g-1 的电流密度下,C-600、C-700、C-800和C-900的电容分别为96、120、154 和 28 F·g-1.由 C-800 制备电极的循环充放电稳定性好, 电流密度为1 A·g-1循环1000次后电容损失小于2%,说明壳聚糖制备多孔碳具有作为超级电容器电极材料的潜在价值. 同时还考察了不同浓度的电解液对C-800电化学性质的影响,发现在KOH浓度为 30%时的电容最大.依据实验结果,对多孔炭制备及其电化学性质间的关系进行了探讨. 展开更多
关键词 超级电容器 电极 多孔炭 壳聚糖 电容
下载PDF
花生壳制备微孔炭及其在电化学超级电容器中的应用(英文) 被引量:7
10
作者 郭培志 季倩倩 +2 位作者 张丽莉 赵善玉 赵修松 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第12期2836-2840,共5页
以未使用和使用氢氧化钠溶液处理的花生壳为碳源分别制备出微孔炭PSC-1和PSC-2.PSC-1和PSC-2的比表面积分别为552和726m2·g-1,其主要孔径都约为0.8nm.用PSC-1和PSC-2制备的电极和对称型超级电容器的循环伏安曲线均接近矩形,表明其... 以未使用和使用氢氧化钠溶液处理的花生壳为碳源分别制备出微孔炭PSC-1和PSC-2.PSC-1和PSC-2的比表面积分别为552和726m2·g-1,其主要孔径都约为0.8nm.用PSC-1和PSC-2制备的电极和对称型超级电容器的循环伏安曲线均接近矩形,表明其具有良好的电容特性.在以微孔炭电极为工作电极、铂电极为对电极和银/氯化银电极为参比电极组成的三电极体系测量表明,在0.1A·g-1的电流密度下,PSC-1和PSC-2的比电容达到233和378F·g-1.经过1000次恒电流充放电循环后,在三电极体系和超级电容器中电极均表现出良好的稳定性和电容保持率.基于实验结果探讨了微孔炭的形成机理及其结构与电化学性质之间的联系. 展开更多
关键词 超级电容器 电极 微孔炭 花生壳 电容
下载PDF
Cu_7S_4纳米管的生物分子辅助水热合成与光学性质(英文) 被引量:4
11
作者 郭培志 韩光亭 +1 位作者 王宝燕 赵修松 《物理化学学报》 SCIE CAS CSCD 北大核心 2010年第9期2557-2562,共6页
使用生物分子DL-甲硫氨酸辅助水热方法合成Cu7S4纳米管,产物的形貌与晶型可通过改变实验参数进行调控.研究表明,硝酸铜和DL-甲硫氨酸在反应开始时的配位比为1∶2,而且当反应物的摩尔比为1∶2和反应温度为200℃时可合成直径为100-600nm... 使用生物分子DL-甲硫氨酸辅助水热方法合成Cu7S4纳米管,产物的形貌与晶型可通过改变实验参数进行调控.研究表明,硝酸铜和DL-甲硫氨酸在反应开始时的配位比为1∶2,而且当反应物的摩尔比为1∶2和反应温度为200℃时可合成直径为100-600nm、长度达40-100μm的多晶Cu7S4纳米管.使用D-或L-甲硫氨酸均能得到类似Cu7S4纳米管.Cu7S4纳米管的禁带宽度为2.88eV,与Cu7S4的块体材料相比有明显蓝移.基于实验研究结果,讨论了甲硫氨酸分子中的官能团与反应产物之间的联系并提出了Cu7S4纳米管的自牺牲模板法形成机理. 展开更多
关键词 水热合成 Cu7S4纳米管 甲硫氨酸 生物分子
下载PDF
生物分子L-半胱氨酸辅助的六角形γ-硫化锰的水热合成与表征(英文) 被引量:3
12
作者 郭培志 李洪亮 +2 位作者 于建强 孙红 赵修松 《无机化学学报》 SCIE CAS CSCD 北大核心 2008年第9期1387-1392,共6页
本文使用L-半胱氨酸和不同类型的锰盐通过水热方法合成了具有不同直径和长度的六角形γ-硫化锰的单晶纳米棒,并通过X-射线衍射、扫描电子显微镜和透射电子显微镜实验对γ-硫化锰纳米棒的结构和性质进行了表征。实验结果表明不同锰盐中... 本文使用L-半胱氨酸和不同类型的锰盐通过水热方法合成了具有不同直径和长度的六角形γ-硫化锰的单晶纳米棒,并通过X-射线衍射、扫描电子显微镜和透射电子显微镜实验对γ-硫化锰纳米棒的结构和性质进行了表征。实验结果表明不同锰盐中的阴离子对六角形γ-硫化锰纳米棒的形成具有影响并对其形成机理进行了简单讨论。 展开更多
关键词 γ-硫化锰 L-半胱氨酸 纳米棒 单品
下载PDF
Mn2O3纳米结构的简易合成与电化学性质(英文) 被引量:2
13
作者 赵丹 谭金山 +3 位作者 季倩倩 张进涛 赵修松 郭培志 《无机化学学报》 SCIE CAS CSCD 北大核心 2010年第5期832-838,共7页
用简易的室温或水热方法制备出不同形貌的MnCO3微结构。经600℃热处理后,室温制备MnCO3转变成Mn2O3胶体片,而水热制备MnCO3样品则形成多孔Mn2O3纳米结构。然而,室温制备MnCO3经120℃热处理后形成Mn2O3晶相。制备样品经过XRD和SEM表征表... 用简易的室温或水热方法制备出不同形貌的MnCO3微结构。经600℃热处理后,室温制备MnCO3转变成Mn2O3胶体片,而水热制备MnCO3样品则形成多孔Mn2O3纳米结构。然而,室温制备MnCO3经120℃热处理后形成Mn2O3晶相。制备样品经过XRD和SEM表征表明,热处理MnCO3前驱物形成Mn2O3过程导致产物形貌与结构变化。其形成机理又通过TEM和FTIR进一步研究。Mn2O3纳米结构的电容性质通过循环伏安法表征,结果表明Mn2O3形貌与结构对其电容有重要影响。 展开更多
关键词 MN2O3 MnCO3 水热合成 电容
下载PDF
纺锤形β-FeOOH纳米结构和α-氧化铁亚微米/微米粒子的合成与转变(英文) 被引量:1
14
作者 郭培志 谭金山 +2 位作者 季倩倩 赵丹 赵修松 《无机化学学报》 SCIE CAS CSCD 北大核心 2009年第4期647-651,共5页
使用一种简易的无表面活性剂辅助的水热合成方法,在温度为140℃时实现了纺锤形β-FeOOH纳米结构向α-氧化铁亚微米/微米粒子的转变。研究表明,通过实验参数的简单调控,实现了单晶α-氧化铁亚微米粒子与β-FeOOH的纺锤形纳米结构和纳米... 使用一种简易的无表面活性剂辅助的水热合成方法,在温度为140℃时实现了纺锤形β-FeOOH纳米结构向α-氧化铁亚微米/微米粒子的转变。研究表明,通过实验参数的简单调控,实现了单晶α-氧化铁亚微米粒子与β-FeOOH的纺锤形纳米结构和纳米棒的控制制备。基于实验结果,提出了该过程中的相转变机理。 展开更多
关键词 α-氧化铁 β-FeOOH 水热合成 相转变
下载PDF
二氧化铈八面体的水热合成与表征(英文) 被引量:4
15
作者 位忠斌 崔育倩 +3 位作者 郭培志 顾毅 张国梁 赵修松 《无机化学学报》 SCIE CAS CSCD 北大核心 2011年第7期1399-1404,共6页
本文选用硝酸铈和草酸利用水热合成方法合成出二氧化铈八面体。水热产物的形貌与物相可以通过改变反应温度和时间进行调控。基于实验结果,提出了形成二氧化铈八面体的自牺牲模板法机理。
关键词 氧化铈 八面体 水热合成 相转变
下载PDF
Laser cleaning of steel structure surface for paint removal and repaint adhesion 被引量:27
16
作者 Xiaoguang Li Tingting Huang +3 位作者 Ang Wei Chong Rui Zhou Yoo Sang Choo Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第3期340-344,共5页
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo... Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications. 展开更多
关键词 LASER steel structure surface paint removal repainting adhesion
下载PDF
Hybridizing micro-Ti with nano-B_(4)C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite 被引量:8
17
作者 S.Sankaranarayanan S.Jayalakshmi M.Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第1期13-19,共7页
In this study,the effects of hybridizing micron-sized titanium particles with nano-sized boron carbide particles on the microstructural and mechanical properties of Mg-Ti composite were investigated.Microstructural ch... In this study,the effects of hybridizing micron-sized titanium particles with nano-sized boron carbide particles on the microstructural and mechanical properties of Mg-Ti composite were investigated.Microstructural characterization revealed grain refinement attributed to the presence of uniformly distributed micro-Ti particles embedded with nano-B_(4)C particulates.Electron back scattered diffraction(EBSD)analyses of the Mg-(Ti+B_(4)C)BM hybrid composite showed relatively more localized recrystallized grains and lesser tensile twin fraction,when compared to Mg-Ti.The evaluation of mechanical properties indicated that the best combination of strength and ductility was observed in the Mg-(Ti+B_(4)C)BM hybrid composite.The superior properties of the Mg-(Ti+B_(4)C)BM hybrid composite when compared to Mg-Ti can be attributed to the presence of nano-reinforcement,the uniform distribution of the hybridized particles and the better interfacial bonding between the matrix and the reinforcement particles achieved by nano-B_(4)C addition. 展开更多
关键词 Composite materials Electron microscopy(SEM) Electron diffraction(electron back scattered diffraction) Mechanical properties
下载PDF
Recent advances in optical dynamic metaholography 被引量:22
18
作者 Hui Gao Xuhao Fan +1 位作者 Wei Xiong Minghui Hong 《Opto-Electronic Advances》 SCIE 2021年第11期27-45,共19页
Holography,with the capability of recording and reconstructing wavefronts of light,has emerged as an ideal approach for future deep-immersive naked-eye display.However,the shortcomings(e.g.,small field of view,twin im... Holography,with the capability of recording and reconstructing wavefronts of light,has emerged as an ideal approach for future deep-immersive naked-eye display.However,the shortcomings(e.g.,small field of view,twin imaging,multiple or-ders of diffraction)of traditional dynamic holographic devices bring many challenges to their practical applications.Metasurfaces,planar artificial materials composed of subwavelength unit cells,have shown great potential in light field manipulation,which is useful for overcoming these drawbacks.Here,we review recent progress in the field of dynamic metasurface holography,from realization methods to design strategies,mainly including typical research works on dy-namic meta-holography based on tunable metasurfaces and multiplexed metasurfaces.Emerging applications of dynam-ic meta-holography have been found in 3D display,optical storage,optical encryption,and optical information pro-cessing,which may accelerate the development of light field manipulation and micro/nanofabrication with higher dimen-sions.A number of potential applications and possible development paths are also discussed at the end. 展开更多
关键词 metasurface dynamic meta-holography tunable meta-holography multiplexed meta-holography
下载PDF
Evolutionary Multi-objective Portfolio Optimization in Practical Context 被引量:5
19
作者 S.C.Chiam A.Al Mamum 《International Journal of Automation and computing》 EI 2008年第1期67-80,共14页
This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search pro... This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic constraints into the problem model and preference criterion into the optimization search process. The former is essential to enhance the realism of the classical mean-variance model proposed by Harry Markowitz, since portfolio managers often face a number of realistic constraints arising from business and industry regulations, while the latter reflects the fact that portfolio managers are ultimately interested in specific regions or points along the efficient frontier during the actual execution of their investment orders. For the former, this paper proposes an order-based representation that can be easily extended to handle various realistic constraints like floor and ceiling constraints and cardinality constraint. An experimental study, based on benchmark problems obtained from the OR-library, demonstrates its capability to attain a better approximation of the efficient frontier in terms of proximity and diversity with respect to other conventional representations. The experimental results also illustrated its viability and practicality in handling the various realistic constraints. A simple strategy to incorporate preferences into the multi-objective optimization process is highlighted and the experimental study demonstrates its capability in driving the evolutionary search towards specific regions of the efficient frontier. 展开更多
关键词 Evolutionary computation multi-objective optimization portfolio optimization preference-based multi-objective optimization constraint handling
下载PDF
Directional sliding of water:biomimetic snake scale surfaces 被引量:16
20
作者 Yizhe Zhao Yilin Su +1 位作者 Xuyan Hou Minghui Hong 《Opto-Electronic Advances》 SCIE 2021年第4期35-46,共12页
Bioinspired superhydrophobic surfaces have attracted many industrial and academic interests in recent years.Inspired by unique superhydrophobicity and anisotropic friction properties of snake scale surfaces,this study... Bioinspired superhydrophobic surfaces have attracted many industrial and academic interests in recent years.Inspired by unique superhydrophobicity and anisotropic friction properties of snake scale surfaces,this study explores the feasibility to produce a bionic superhydrophobic stainless steel surface via laser precision engineering,which allows the realization of directional superhydrophobicity and dynamic control of its water transportation.Dynamic mechanism of water sliding on hierarchical snake scale structures is studied,which is the key to reproduce artificially bioinspired multifunctional materials with great potentials to be used for water harvesting,droplet manipulation,pipeline transportation,and vehicle acceleration. 展开更多
关键词 BIOMIMETIC hierarchical micro/nanostructures directional superhydrophobicity anisotropic friction
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部