in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC st...in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.展开更多
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numeric...The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.展开更多
Command protection engineering is the important component of national protection engineering system. To raise the level of its construction, a deformation prediction model is given based on Genetic Algorithm (GA), Lea...Command protection engineering is the important component of national protection engineering system. To raise the level of its construction, a deformation prediction model is given based on Genetic Algorithm (GA), Least Square Support Vector Machines (LSSVM) and markov theory. Genetic algorithm is used to improve the parameter of LSSVM. Markov predict method is used to improve the precision of the prediction model. Finally, be used to a certain command protection engineering, the accuracy of the algorithm is improved obviously. The model is proved to be credible and precise.展开更多
Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have consi...Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.展开更多
Supervisory control is a very popular paradigm for computer-controlled systems. Knowledge and tracking the control effect of every control operation is crucial to the control tasks. In the paper, we present a message-...Supervisory control is a very popular paradigm for computer-controlled systems. Knowledge and tracking the control effect of every control operation is crucial to the control tasks. In the paper, we present a message-array-based mechanism to track control effects in supervisory control software. A novel data type, message array, is designed to efficiently support this tracking mechanism. The operation algorithms, adding algorithm (AA), removing algorithm (RA), and scheduler algorithm (SA) are proposed to operate the tracking messages in message array, which forms the special first input X output (FIXO) strategy of message array. Automatically tracking, recording, and rolling back are the characteristics of our tracking mechanism. We implement this messagearray-based mechanism on the famous human machine interface (HMI) software platform-proficy iFix, and construct experiments to evaluate the performance of the mechanism in various cases. The results show our mechanism can be well satisfied with supervisory control software.展开更多
Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section undergrou...Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures展开更多
In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for pro...In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for projectile impacting on irregular barrier was achieved according to the macroscopic relation of contact force versus contact time,in which the main factors such as the relative geometrical characteristics of projectile and irregular barrier,material property and impact velocity of projectile influencing on yaw-inducing effectiveness were considered.On the basis of considering synthetically the influences of attack angle,impact velocity,impact angle of projectile and uncontrolled free surface of target,the theoretical formulation of penetration depth for bursting layer with irregular barriers on surface impacted by projectile was presented by expressing the stress of an optional point on the nose of projectile according to the relation of stress versus velocity.The theoretical results indicate that in the case of oblique impact embodying effect of attack angle,the penetration depth is reduced with the increase of impact angle,attack angle or angular velocity,and penetration trajectory is also deflected obviously.The effectiveness of angular velocity influencing on penetration depth is increased with impact velocity increasing.The theoretical results are in good agreement with test data for low impact velocity.展开更多
To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic cha...To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.展开更多
A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the...A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex-perimentally in order to investigate its isolation performance under the impact loads. A new me-chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon-strated that MRD can improve the acceleration and displacement response of the structure obvi-ously under impact loads.展开更多
A spectral match optimization based on grey incidence matrix was put forward to evaluate camouflage painting design.A synthetic degree of incidence (SDI) was defined to comprehensively reflect the spectrum similarity ...A spectral match optimization based on grey incidence matrix was put forward to evaluate camouflage painting design.A synthetic degree of incidence (SDI) was defined to comprehensively reflect the spectrum similarity based on theory of grey incidence analysis.A grey optimization model for camouflage painting sheme was constructed on the basis of SDI and grey incidence matrix.Its weight values were determined according to area percentages of all components in the camouflage scene,and a quantitative ordering for various schemes could be obtained according to the evaluation coefficients.Experiment results show that the method mentioned in this paper can provide a quantitative basis for the camouflage decision-making,and it can also be used in other camouflage scheme selection.展开更多
Two signal processing approaches are presented to improve imaging resolution in ultrasonic NDT of concrete structures. When low-frequency B-scan data are processed by Synthetic Aperture Focusing Technique (SAFT), wa...Two signal processing approaches are presented to improve imaging resolution in ultrasonic NDT of concrete structures. When low-frequency B-scan data are processed by Synthetic Aperture Focusing Technique (SAFT), wavepacket will be further elongated because low-frequency detection signal covers a relative long period. Wavepacket Decomposition Tech- nique (WDT) is introduced here to solve this problem. This method uses a few parameters to describe the original signal so that it can avoid the processing of the whole time history of signals. In practical measurement, ringing of commercial ultrasonic transducers also affects the discrimination of the detected signal. A method based on digital filtering is proposed to build the compensation model of transducer system. By eliminating the ringings with the filter, the spatiotemporal resolution of ultrasonic imaging is improved. The efficiency of the methods has been proved by numerical simulation and experimental results. Imaging resolution is improved obviously and the embedded^object in a test specimen is located accurately.展开更多
基金Supported by National Natural Science Foundation of China (No.50638030 and 50525825)National Science and Technology Support Program (No.2006BAJ13B02).
文摘in order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS. Simulation results agree with the experimental observations. It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.
基金Supported by National Natural Science Foundation of China(No.50638030 and 50525825)National Science and Technology Support Program(No.2006BAJ13B02)
文摘The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect.
文摘Command protection engineering is the important component of national protection engineering system. To raise the level of its construction, a deformation prediction model is given based on Genetic Algorithm (GA), Least Square Support Vector Machines (LSSVM) and markov theory. Genetic algorithm is used to improve the parameter of LSSVM. Markov predict method is used to improve the precision of the prediction model. Finally, be used to a certain command protection engineering, the accuracy of the algorithm is improved obviously. The model is proved to be credible and precise.
基金Supported by National Natural Science Foundation of China(No.50525825)
文摘Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.
文摘Supervisory control is a very popular paradigm for computer-controlled systems. Knowledge and tracking the control effect of every control operation is crucial to the control tasks. In the paper, we present a message-array-based mechanism to track control effects in supervisory control software. A novel data type, message array, is designed to efficiently support this tracking mechanism. The operation algorithms, adding algorithm (AA), removing algorithm (RA), and scheduler algorithm (SA) are proposed to operate the tracking messages in message array, which forms the special first input X output (FIXO) strategy of message array. Automatically tracking, recording, and rolling back are the characteristics of our tracking mechanism. We implement this messagearray-based mechanism on the famous human machine interface (HMI) software platform-proficy iFix, and construct experiments to evaluate the performance of the mechanism in various cases. The results show our mechanism can be well satisfied with supervisory control software.
基金Financial support from the Beijing Natural Science Foundation (No. KZ200810016007)the National 973 Key Program (No. 2010CB732003)the National Science Foundation of China(NSFC) (No. 50825403) is gratefully acknowledged
文摘Seismic safety of underground structures is one of the main concerns in underground space exploitation. As the first step for dynamic seismic response analysis, the free vibration of long large cross-section underground structures is studied in the present paper. The general free transverse vibration motion equation of long large cross-section underground structure is derived with the comprehensive consideration of internal and external damping, effects of shear, cross-sectional rotational inertia and axial force, and a twoparameter soil model. In this way, Timoshenko's beam theory is extended. Two limit cases of free transverse vibration of underground structures are discussed. Parameter study shows that in general wave propagation velocities in structures increase with soil elastic parameters. However the influence of Winkler's parameter k is significant while the effect of the second soil elastic parameter gp is insignificant. The free vibration frequency of underground structures increases with relative wave number and soil elastic parameters. Unlike the influence of soil elastic parameters on wave propagation velocities, the influence of soil elastic parameters k and gp on the vibration frequency of underground structures have the same order; therefore the influence of the second soil parameter gp on the free vibration of underground structures should not be neglected in dynamic seismic analysis of underground structures
基金Project(20110490894) supported by the Postdoctoral Science Foundation of ChinaProject(50908228) supported by the National Natural Science Foundation of ChinaProject(51021001) supported by the Science Foundation for Creative Research Groups of China
文摘In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for projectile impacting on irregular barrier was achieved according to the macroscopic relation of contact force versus contact time,in which the main factors such as the relative geometrical characteristics of projectile and irregular barrier,material property and impact velocity of projectile influencing on yaw-inducing effectiveness were considered.On the basis of considering synthetically the influences of attack angle,impact velocity,impact angle of projectile and uncontrolled free surface of target,the theoretical formulation of penetration depth for bursting layer with irregular barriers on surface impacted by projectile was presented by expressing the stress of an optional point on the nose of projectile according to the relation of stress versus velocity.The theoretical results indicate that in the case of oblique impact embodying effect of attack angle,the penetration depth is reduced with the increase of impact angle,attack angle or angular velocity,and penetration trajectory is also deflected obviously.The effectiveness of angular velocity influencing on penetration depth is increased with impact velocity increasing.The theoretical results are in good agreement with test data for low impact velocity.
文摘To investigate the hydrodynamic characteristic of pontoon bridge, the multi-block grid generation technique with numerical methods for viscous fluid dynamics is applied to numerical simulations on the hydrodynamic characteristic of a ribbon ferrying raft model at a series of towing speeds. Comparison of the simulated results with the experimental data indicates that the simulated results are acceptable. It shows that the multi-block grid generation technique is effective in the computation on pontoon bridge hydrodynamics.
基金Supported by National Natural Science Foundation of China (No.50638030,50525825)the National Science and Technology SupportProgram (No.2006BAJ13B02)
文摘A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex-perimentally in order to investigate its isolation performance under the impact loads. A new me-chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon-strated that MRD can improve the acceleration and displacement response of the structure obvi-ously under impact loads.
文摘A spectral match optimization based on grey incidence matrix was put forward to evaluate camouflage painting design.A synthetic degree of incidence (SDI) was defined to comprehensively reflect the spectrum similarity based on theory of grey incidence analysis.A grey optimization model for camouflage painting sheme was constructed on the basis of SDI and grey incidence matrix.Its weight values were determined according to area percentages of all components in the camouflage scene,and a quantitative ordering for various schemes could be obtained according to the evaluation coefficients.Experiment results show that the method mentioned in this paper can provide a quantitative basis for the camouflage decision-making,and it can also be used in other camouflage scheme selection.
基金supported by the National Natural Science Foundation of China(60535020)by the Research Foundation of Engineering Institute of Corps of Engineers PLA University of Science and Technology(0603005)by the Research Foundation of Nanchang Hangkong university(EA200908019)
文摘Two signal processing approaches are presented to improve imaging resolution in ultrasonic NDT of concrete structures. When low-frequency B-scan data are processed by Synthetic Aperture Focusing Technique (SAFT), wavepacket will be further elongated because low-frequency detection signal covers a relative long period. Wavepacket Decomposition Tech- nique (WDT) is introduced here to solve this problem. This method uses a few parameters to describe the original signal so that it can avoid the processing of the whole time history of signals. In practical measurement, ringing of commercial ultrasonic transducers also affects the discrimination of the detected signal. A method based on digital filtering is proposed to build the compensation model of transducer system. By eliminating the ringings with the filter, the spatiotemporal resolution of ultrasonic imaging is improved. The efficiency of the methods has been proved by numerical simulation and experimental results. Imaging resolution is improved obviously and the embedded^object in a test specimen is located accurately.