期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Rare Earths and Magnetic Refrigeration 被引量:20
1
作者 Karl A Gschneidner Vitalij K Pecharsky 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第6期641-647,共7页
Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrige... Magnetic refrigeration is a revolutionary, efficient, environmentally friendly cooling technology, which is on the threshold of commercialization. The magnetic rare earth materials are utilized as the magnetic refrigerants in most cooling devices, and for many cooling application the Nd2Fe14B permanent magnets are employed as the source of the magnetic field. The status of the near room temperature magnetic cooling was reviewed. 展开更多
关键词 magnetic refrigeration magnetocaloric effect GADOLINIUM Gd5 Si1- x Gex 4 La Fe 13 - x Six Hy Nd2 Fe14 B permanent magnets active magnetic regenerator cycle rare earths
下载PDF
Optical Properties of (100) Preferred Oriented Titanium-Doped Zinc Oxide Thin Films and Their Electron Trapping Phenomena
2
作者 Leanddas Nurdiwijayanto Bambang Sunendar Purwasasmita 《材料科学与工程(中英文版)》 2010年第11期1-7,共7页
关键词 氧化锌薄膜 钛掺杂 电子俘获 择优取向 光学性质 紫外可见分光光度计 可见光透过率 自组装单分子膜
下载PDF
Computational modelling and simulation to mitigate the risk of daylight exposure in tropical museum buildings
3
作者 Rizki A.Mangkuto Tommy Partogi Simamora +1 位作者 Desliana Putri Pratiwi Mochamad Donny Koerniawan 《Energy and Built Environment》 2024年第2期171-184,共14页
In museum design and operation,daylight is typically discouraged due to high risk of damaging the display objects.However,past studies in high-latitude regions have shown the possibility to apply daylight in museums,s... In museum design and operation,daylight is typically discouraged due to high risk of damaging the display objects.However,past studies in high-latitude regions have shown the possibility to apply daylight in museums,so long as it is carefully planned,and the display objects are not from the category of high responsive materials.In the tropical region,the influence of daylighting on light exposure on museum objects is still unknown.This study therefore aims to assess and mitigate the impact of annual daylight exposure on objects with low responsive materials in a tropical daylit museum building.Annual daylight modelling and simulation are performed to achieve the objective,followed with Morris sensitivity analysis and Mahalanobis distance classifier to optimise the outcome.It is found that either WWR or glazing transmissivity gives the greatest influence on the performance indicators.Based on the proposed optimisation algorithm,it is possible to determine the optimum solutions satisfying the performance indicators target,for a certain opening type.Overall,the contribution of this study is the proposed computational modelling and simulation methods to mitigate the exposure risk while optimising daylight as a renewable energy source. 展开更多
关键词 DAYLIGHTING MUSEUM Computational modelling Simulation Annual light exposure
原文传递
Experiment and simulation to determine the optimum orientation of building-integrated photovoltaic on tropical building façades considering annual daylight performance and energy yield
4
作者 Rizki A.Mangkuto Dhian Nur Aziz T.Tresna +4 位作者 Ikhwan M.Hermawan Justin Pradipta Nurul Jamala Beta Paramita Atthaillah 《Energy and Built Environment》 2024年第3期414-425,共12页
Building-Integrated Photovoltaic(BIPV)on vertical façades is a potential PV application in today’s buildings.The performance of BIPV on façades is significantly influenced by the façade orientation.For... Building-Integrated Photovoltaic(BIPV)on vertical façades is a potential PV application in today’s buildings.The performance of BIPV on façades is significantly influenced by the façade orientation.For tropical cities,the optimum façade orientation,in terms of maximum energy yield and daylight performance,cannot be simply determined,due to relatively symmetrical sun path throughout the day.This study therefore aims to determine the optimum orientation for BIPV on tropical building façades.To achieve the objective,experiment,modelling,and computational simulation are conducted to evaluate the BIPV energy yield and to predict the indoor daylight performance in a scale-model building with a 105Wp monocrystalline silicon PV,facing each cardinal orienta-tion in Bandung,Indonesia.The South orientation yields practically zero ASE_(1000,250),providing the best annual daylight performance,and yielding the most desirable value in four out of five daylight metrics.The greatest annual energy yield is at the North orientation,providing 179-186 kWh(95%prediction interval)per year,but with larger uncertainty compared to that at the South,due to direct sunlight occurrence.Based on three different objective functions,the South orientation is considered optimum for placing the BIPV panel on the prototype façade in the location. 展开更多
关键词 Building-integrated photovoltaic ORIENTATION Daylight metric Energy yield Tropical building façade
原文传递
Wafer-scale transfer route for top–down III-nitride nanowire LED arrays based on the femtosecond laser lift-off technique 被引量:1
5
作者 Nursidik Yulianto Andam Deatama Refino +11 位作者 Alina Syring Nurhalis Majid Shinta Mariana Patrick Schnell Ruri Agung Wahyuono Kuwat Triyana Florian Meierhofer Winfried Daum Fatwa F.Abdi Tobias Voss Hutomo Suryo Wasisto Andreas Waag 《Microsystems & Nanoengineering》 EI CSCD 2021年第2期205-219,共15页
The integration of gallium nitride(GaN)nanowire light-emitting diodes(nanoLEDs)on flexible substrates offers opportunities for applications beyond rigid solid-state lighting(e.g.,for wearable optoelectronics and benda... The integration of gallium nitride(GaN)nanowire light-emitting diodes(nanoLEDs)on flexible substrates offers opportunities for applications beyond rigid solid-state lighting(e.g.,for wearable optoelectronics and bendable inorganic displays).Here,we report on a fast physical transfer route based on femtosecond laser lift-off(fs-LLO)to realize wafer-scale top–down GaN nanoLED arrays on unconventional platforms.Combined with photolithography and hybrid etching processes,we successfully transferred GaN blue nanoLEDs from a full two-inch sapphire substrate onto a flexible copper(Cu)foil with a high nanowire density(~107 wires/cm2),transfer yield(~99.5%),and reproducibility.Various nanoanalytical measurements were conducted to evaluate the performance and limitations of the fs-LLO technique as well as to gain insights into physical material properties such as strain relaxation and assess the maturity of the transfer process.This work could enable the easy recycling of native growth substrates and inspire the development of large-scale hybrid GaN nanowire optoelectronic devices by solely employing standard epitaxial LED wafers(i.e.,customized LED wafers with additional embedded sacrificial materials and a complicated growth process are not required). 展开更多
关键词 SAPPHIRE transfer lighting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部