期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Insight into microbial synthesis of metal nanomaterials and their environmental applications:Exploration for enhanced controllable synthesis
1
作者 Yuqing Liu Yu Yang +3 位作者 Yuhan E Changlong Pang Di Cui Ang Li 《Chinese Chemical Letters》 SCIE CAS 2024年第11期6-15,共10页
Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellula... Microbial fabrication of metal nanoparticles(MNPs)has received significant attention due to the advantages of low toxicity,energy efficiency and ecological safety.Diverse groups of MNPs can be synthesized intracellularly or extracellularly by various wild-type microorganisms,including bacteria,fungi,algae and viruses.Synthetic biology approaches,represented by genetic engineering,have been applied to overcome the shortcomings in productivity,stability,and controllability of biosynthetic MNPs.Scanning electron microscope(SEM),transmission electron microscope(TEM)and other characterization techniques assist in deciphering their unique properties.In addition,biosynthetic MNPs have been widely explored for the utilization in environmental remediation and contaminant detection.And machine learning contains a great potential for designing targeted MNPs and predicting their toxicity.This review provides a comprehensive overview of the research progress in the microbial synthesis of MNPs.An outlook on the current challenges and future prospects in the biologically controllable synthesis and engineering environmental applications of MNPs is also provided in this review. 展开更多
关键词 Microbial synthesis Metal nanoparticles Controllable synthesis Synthetic biology Environmental applications
原文传递
Design and evaluation of chitosan-amino acid thermosensitive hydrogel
2
作者 Jianan Tong Huiyun Zhou +5 位作者 Jingjing Zhou Yawei Chen Jing Shi Jieke Zhang Xinyu Liang Tianyuan Du 《Marine Life Science & Technology》 SCIE CAS 2022年第1期74-87,共14页
Chitosan/glycerophosphate thermosensitive hydrogel crosslinked physically was a potential drug delivery carrier;however, long gelation time limits its application. Here, chitosan-amino acid (AA) thermosensitive hydrog... Chitosan/glycerophosphate thermosensitive hydrogel crosslinked physically was a potential drug delivery carrier;however, long gelation time limits its application. Here, chitosan-amino acid (AA) thermosensitive hydrogels were prepared from chitosan (CS), αβ-glycerophosphate (GP), and L-lysine (Lys) or L-glutamic acid (Glu). The prepared CS-Lys/GP and CS-Glu/GP hydrogel showed good thermosensitivity and could form gels in a short time. The optimal parameters of CS-Lys/GP hydrogel were that the concentration of CS-Lys was 2.5%, the ratio of CS/Lys was 3.5/1.0, the ratio of CS-Lys/GP was 4.5/1.0. The optimal parameters of CS-Glu/GP hydrogel were that the concentration of CS-Glu was 3.0%, the ratio of CS/Glu was 2.0/1.0, and the ratio of CS-Glu/GP was 4.0/1.5. Chitosan-amino acid (CS-AA) thermosensitive hydrogel had a three-dimensional network structure. The addition of model drug tinidazole (TNZ) had no obvious effect on the structure of hydrogel. The results of infrared spectroscopy showed that there were hydrogen bonds between amino acids and chitosan. In vitro release results showed that CS-Lys/GP and CS-Glu/GP thermosensitive hydrogels had sustained release effects. Thus, the chitosan-amino acid thermosensitive hydrogels hold great potential as a sustained release drug delivery system. 展开更多
关键词 CHITOSAN L-LYSINE L-Glutamic acid αβ-Glycerophosphate Thermosensitive hydrogel In vitro release
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部