Water-soluble Mn2+-doped ZnS nanocrystals surface capped with polyethylene glycol(expressed as PEG-ZnS:Mn2+) were synthesized in aqueous solution with PEG as surface modifier without ligand exchange.The particles...Water-soluble Mn2+-doped ZnS nanocrystals surface capped with polyethylene glycol(expressed as PEG-ZnS:Mn2+) were synthesized in aqueous solution with PEG as surface modifier without ligand exchange.The particles were obtained via chemical precipitation method at 100 ℃ with an average diameter of 3 nm and a zinc blende structure.The PEG modified on the surface of PEG-ZnS:Mn2+ nanocrystals rendered the nanocrystals water soluble and biocompatible.And the PEG-ZnS:Mn2+ nanocrystals have the potential application in molecular assembly and biological fluorescence analysis.The effects of the Mn2+ concentration,stabilizer concentration,and synthesis time on the photoluminescence(PL) intensity of ZnS:Mn2+ QDs were also investigated.展开更多
Novel functional hyperbranched poly(aryl ether ketone)s (HPAEKs) bonded with nonlinear optical chromophores (meso-tetrakis(4-hydroxyphenyl) porphyrin, THPP and its metal derivatives) were synthesized and chara...Novel functional hyperbranched poly(aryl ether ketone)s (HPAEKs) bonded with nonlinear optical chromophores (meso-tetrakis(4-hydroxyphenyl) porphyrin, THPP and its metal derivatives) were synthesized and characterized by IH-NMR and UV-Vis absorption spectra. The incorporation of chromophores into HPAEKs endowed HPAEKs novel NLO and OL properties. Indeed, dendritic architecture allowed for maximum dispersion of the chromophores, avoided aggregation, more optical limiting property was obtained. Simultaneously, they retained the excellent properties of the materials, particularly in thermal stability. Their optical properties were evaluated by nonlinear optical analyses and optical limiting. The results showed that these polymers possessed good optical limiting (OL) property and large nonlinear optical (NLO) susceptibilities (ca. 10-12 esu). All polymers containing chromophores presented excellent thermal stability (DT5 〉 524.17 ℃).展开更多
文摘Water-soluble Mn2+-doped ZnS nanocrystals surface capped with polyethylene glycol(expressed as PEG-ZnS:Mn2+) were synthesized in aqueous solution with PEG as surface modifier without ligand exchange.The particles were obtained via chemical precipitation method at 100 ℃ with an average diameter of 3 nm and a zinc blende structure.The PEG modified on the surface of PEG-ZnS:Mn2+ nanocrystals rendered the nanocrystals water soluble and biocompatible.And the PEG-ZnS:Mn2+ nanocrystals have the potential application in molecular assembly and biological fluorescence analysis.The effects of the Mn2+ concentration,stabilizer concentration,and synthesis time on the photoluminescence(PL) intensity of ZnS:Mn2+ QDs were also investigated.
基金financially supported by the grants from Ph.D.Program Foundation of Ministry of Education of China(No.20120061110017)
文摘Novel functional hyperbranched poly(aryl ether ketone)s (HPAEKs) bonded with nonlinear optical chromophores (meso-tetrakis(4-hydroxyphenyl) porphyrin, THPP and its metal derivatives) were synthesized and characterized by IH-NMR and UV-Vis absorption spectra. The incorporation of chromophores into HPAEKs endowed HPAEKs novel NLO and OL properties. Indeed, dendritic architecture allowed for maximum dispersion of the chromophores, avoided aggregation, more optical limiting property was obtained. Simultaneously, they retained the excellent properties of the materials, particularly in thermal stability. Their optical properties were evaluated by nonlinear optical analyses and optical limiting. The results showed that these polymers possessed good optical limiting (OL) property and large nonlinear optical (NLO) susceptibilities (ca. 10-12 esu). All polymers containing chromophores presented excellent thermal stability (DT5 〉 524.17 ℃).