Aqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost;as such,they are attracting attention in the field of energy storage.However,the temperature sensitivity of aqueous ba...Aqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost;as such,they are attracting attention in the field of energy storage.However,the temperature sensitivity of aqueous batteries hinders their practical application.The solvent water freezes at low temperatures,and there is a reduction in ionic conductivity,whereas it evaporates rapidly at high temperatures,which causes increased side reactions.This review discusses recent progress in improving the performance of aqueous batteries,mainly with respect to electrolyte engineering and the associated strategies employed to achieve such improvements over a wide temperature domain.The review focuses on fi ve electrolyte engineer-ing(aqueous high-concentration electrolytes,organic electrolytes,quasi-solid/solid electrolytes,hybrid electrolytes,and eutectic electrolytes)and investigates the mechanisms involved in reducing the solidifi cation point and boiling point of the electrolyte and enhancing the extreme-temperature electrochemical performance.Finally,the prospect of further improving the wide temperature range performance of aqueous rechargeable batteries is presented.展开更多
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ...Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.展开更多
Nucleophilic substitution reaction and 1,3-dicarbonyl compounds play significant roles in organic chemistry, and non-traditional intrinsic luminescence (NTIL) has become an emerging research area. Here, we demonstrate...Nucleophilic substitution reaction and 1,3-dicarbonyl compounds play significant roles in organic chemistry, and non-traditional intrinsic luminescence (NTIL) has become an emerging research area. Here, we demonstrate the successful nucleophilic substitution polymerization of 1,3-dicarbonyl compounds, including acetylacetone, 3,5-heptanedione, methyl acetoacetate, cyclopentane-1,3-dione, 1,3-indandione, 1-phenyl-1,3-butanedione and dibenzoylmethane, where reactive hydrogens at α position of 1,3-dicarbonyl compounds are involved. Through this base catalyzed nucleophilic substitution polycondensation between 1,3-dicarbonyl compounds and α,α’-dibromo xylene, a series of nonconjugated poly(1,3-dicarbonyl)s have been successfully prepared with high yield (up to >99%) under mild conditions. Investigations reveal that this nucleophilic substitution polycondensation exhibits self-accelerating effect and flexible stoichiometry characteristics, which exhibits advantages over traditional polycondensation methods. This polymerization also exhibits intriguing polymerization-induced emission (PIE) characteristics, where nonconjugated poly(1,3-dicarbonyl)s exhibit intriguing chemical structure dependent aggregation-induced emission (AIE) type NTIL. This work therefore expands the monomer, method, chemical structure and property libraries of polymer chemistry, which may cause inspirations to polymerization methodology, PIE, AIE and NTIL.展开更多
Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle w...Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst,its morphology and structure were analyzed by means of FTIR,XRD,TGA,SEM,and TEM.The effects of the catalyst dosage,methyl orange(MO) initial concentration and solution pH on photocatalytic performance were also discussed.The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity.Under irradiation of visible light,0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6,then the MO solution(10 mg/L) was decolored by more than 99%,indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity.Therefore,the photodegradation kinetic mechanism of MO in aqueous solution is presumed.展开更多
Developing electrodes with long lifespan and wide-temperature adaptability is crucial important to achieve high-performance sodium/potassium-ion batteries(SIBs/PIBs).Herein,the SnSe2-SePAN composite was fabricated for...Developing electrodes with long lifespan and wide-temperature adaptability is crucial important to achieve high-performance sodium/potassium-ion batteries(SIBs/PIBs).Herein,the SnSe2-SePAN composite was fabricated for extraordinarily stable and wide-temperature range SIBs/PIBs through a coupling strategy between controllable electrospinning and selenylation,in which SnSe2 nanoparticles were uniformly encapsulated in the SePAN matrix.The unique structure of SnSe2-SePAN not only relieves drastic volume variation but also guarantees the structural integrity of the composite,endowing SnSe2-SePAN with excellent sodium/potassium storage properties.Consequently,SnSe2-SePAN displays a high sodium storage capacity and excellent feasibility in a wide working temperature range(-15 to 60℃:300 mAh g^(-1)/700 cycles/-15℃;352 mAh g^(-1)/100 cycles/60℃at 0.5 A g^(-1)).At room temperature,it delivers a record-ultralong cycling life of 192 mAh g^(-1)that exceeds 66000 cycles even at 15 A g^(-1).It exhibits extremely superb electrochemical performance in PIBs(157 mAh g^(-1)exceeding 15000 cycles at 5 A g^(-1)).The ex situ XRD and TEM results attest the conversion-alloy mechanism of SnSe2-SePAN.Also,computational calculations verify that SePAN takes an important role in intensifying the electrochemical performance of SnSe2-SePAN electrode.Therefore,this study breaks new ground on solving the polyselenide dissolution issue and improving the wide temperature workable performance of sodium/potassium storage.展开更多
The indiscriminate utilization of nondegradable polyethylene terephthalate(PET)-based products has triggered serious environmental pollution that has to be resolved vigorously.A simple synthesis of N-doped carbon nano...The indiscriminate utilization of nondegradable polyethylene terephthalate(PET)-based products has triggered serious environmental pollution that has to be resolved vigorously.A simple synthesis of N-doped carbon nanotubes from recycled PET(NCNTs_(r-PET))was developed by a nitric acid-assisted hydrothermal method.Experimental results and theoretical calculations show that the intrinsic defects in CNTs_(r-PET)would induce N-doping by NH_(3)generated from nitric acid during the hydrothermal process,thus producing the NCNTs_(r-PET).The life cycle assessment proves that the developed method for N-doped CNTs using r-PET as the carbon source is more environmentally friendly than the conventional chemical vapor deposition using acetylene as the carbon source.As a typical application,the NCNTs_(r-PET)delivered an impressive sodium storage capacity with an ultralong lifespan.This work not only provides a new route to upcycling waste plastics into valuable carbonaceous materials in an ecofriendly manner,but also reveals a basic understanding of the N-doping mechanism in carbonaceous materials.展开更多
Potassium-ion batteries(PIBs)have garnered significant attention as a promising alternative to commercial lithium-ion batteries(LIBs)due to abundant and cost-efficient potassium reserves.However,the large size of pota...Potassium-ion batteries(PIBs)have garnered significant attention as a promising alternative to commercial lithium-ion batteries(LIBs)due to abundant and cost-efficient potassium reserves.However,the large size of potassium ions and the resulting sluggish reaction kinetics present major obstacles to the widespread use of PIBs.Herein,we present a simple method to ingeniously encapsulate SnS_(2)nanoparticles within sulfurized polyacrylonitrile(SPAN)fibers(SnS_(2)@SPAN)for serving as a high-performance PIB anode.The large interlayer spacing of SnS_(2)provides a fast transport channel for potassium ions during charge–discharge cycles,while the one-dimensional SPAN skeleton offers massive binding sites and shortens the diffusion path for potassium ions,facilitating faster reaction kinetics.Additionally,the excellent ductility of SPAN can effectively accommodate the large volume changes that occur in SnS_(2)upon potassium-ion insertion,thereby enhancing the cyclic stability of SnS_(2).Benefiting from the above advantages,the SnS_(2)@SPAN composites exhibit impressive cyclability over 500 cycles at 4 A g−1,with a capacity retention rate close to 100%.This study provides an effective approach for stabilizing high-capacity PIB anode materials with large volume variations.展开更多
At present,there have been some reports on the application of metal phase selenide(1T-MSe_(2))in the field of energy storage.In this manuscript,a stable Sn-doped metal phase tungsten selenide(1T-WSe_(2)-Sn)was elabora...At present,there have been some reports on the application of metal phase selenide(1T-MSe_(2))in the field of energy storage.In this manuscript,a stable Sn-doped metal phase tungsten selenide(1T-WSe_(2)-Sn)was elaborately fabricated in situ by a simple calcination technique.N-doping was introduced by employing chitosan as precursor and nanoreactor,the Sn-doping induces 1T phase of WSe_(2)and enlarges the layer space to promote the electron/ion transport and structural stability.The optimized 1T-WSe_(2)-Sn electrode delivers prominent cycling lifespan(285 mAh·g^(-1)at 1.0 A·g^(-1)after 900 cycles)along with decent rate capability when applied as an anode of sodium ion batteries(SIBs).The specific capacity was determined to be of 460 mAh·g^(-1)at 0.1 A·g^(-1)after 100cycles.It also displays superior capacity of 183 mAh·g^(-1)at0.5 A·g^(-1)for 200 cycles when paired with Na_(3)V_(2)(PO_(4))_(3)cathode.Applied as the anode for potassium ion batteries(PIBs),it exhibits a satisfactory specific capacity of 345mAh·g^(-1)at 0.1 A·g^(-1)after 50 cycles.展开更多
Electrospun nanofibers(NFs)have shown excellent properties including high porosity,abundant active sites,controllable diameter,uniform and designable structure,high mechanical strength,and superior resistance to exter...Electrospun nanofibers(NFs)have shown excellent properties including high porosity,abundant active sites,controllable diameter,uniform and designable structure,high mechanical strength,and superior resistance to external destruction,which are ideal nanoreactors for in situ characterizations.Among various techniques,in situ transmission electron microscopy(TEM)has enabled operando observation at the atomic level due to its high temporal and spatial resolution combined with excellent sensitivity,which is of great importance for rational materials design and performance improvement.In this review,the basic knowledge of in situ TEM techniques and the advantages of electrospun nanoreactors for in situ TEM characterization are first introduced.The recent development in electrospun nanoreactors for studying the physical properties,structural evolution,phase transition,and formation mechanisms of materials using in situ TEM is then summarized.The electrochemical behaviors of carbon nanofibers(CNFs),metal/metal oxide NFs,and solidelectrolyte interphase for different rechargeable batteries are highlighted.Finally,challenges faced by electrospun nanoreactors for in situ TEM characterization are discussed and potential solutions are proposed to advance this field.展开更多
基金supported by the National Key Research and Development Program of China(2019YFC1904500)National Natural Science Foundation of China(Nos.21801251,51502036,and 21875037)+2 种基金Young Top Talent of Fujian Young Eagle Program of Fujian Province,Educational Commis-sion of Fujian Province(2022G02022)Natural Science Foundation of Fuzhou City(2022-Y-004)Natural Science Foundation of Fujian Province(2023J02013).
文摘Aqueous rechargeable batteries are safe and environmentally friendly and can be made at a low cost;as such,they are attracting attention in the field of energy storage.However,the temperature sensitivity of aqueous batteries hinders their practical application.The solvent water freezes at low temperatures,and there is a reduction in ionic conductivity,whereas it evaporates rapidly at high temperatures,which causes increased side reactions.This review discusses recent progress in improving the performance of aqueous batteries,mainly with respect to electrolyte engineering and the associated strategies employed to achieve such improvements over a wide temperature domain.The review focuses on fi ve electrolyte engineer-ing(aqueous high-concentration electrolytes,organic electrolytes,quasi-solid/solid electrolytes,hybrid electrolytes,and eutectic electrolytes)and investigates the mechanisms involved in reducing the solidifi cation point and boiling point of the electrolyte and enhancing the extreme-temperature electrochemical performance.Finally,the prospect of further improving the wide temperature range performance of aqueous rechargeable batteries is presented.
基金supports from the National Natural Science Foundation of China(61801525)the independent fund of the State Key Laboratory of Optoelectronic Materials and Technologies(Sun Yat-sen University)under grant No.OEMT-2022-ZRC-05+3 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Grant No.sklpme2023-3-5))the Foundation of the state key Laboratory of Transducer Technology(No.SKT2301),Shenzhen Science and Technology Program(JCYJ20220530161809020&JCYJ20220818100415033)the Young Top Talent of Fujian Young Eagle Program of Fujian Province and Natural Science Foundation of Fujian Province(2023J02013)National Key R&D Program of China(2022YFB2802051).
文摘Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios.
基金funding support from NSFC(Nos.22271286,21971236).
文摘Nucleophilic substitution reaction and 1,3-dicarbonyl compounds play significant roles in organic chemistry, and non-traditional intrinsic luminescence (NTIL) has become an emerging research area. Here, we demonstrate the successful nucleophilic substitution polymerization of 1,3-dicarbonyl compounds, including acetylacetone, 3,5-heptanedione, methyl acetoacetate, cyclopentane-1,3-dione, 1,3-indandione, 1-phenyl-1,3-butanedione and dibenzoylmethane, where reactive hydrogens at α position of 1,3-dicarbonyl compounds are involved. Through this base catalyzed nucleophilic substitution polycondensation between 1,3-dicarbonyl compounds and α,α’-dibromo xylene, a series of nonconjugated poly(1,3-dicarbonyl)s have been successfully prepared with high yield (up to >99%) under mild conditions. Investigations reveal that this nucleophilic substitution polycondensation exhibits self-accelerating effect and flexible stoichiometry characteristics, which exhibits advantages over traditional polycondensation methods. This polymerization also exhibits intriguing polymerization-induced emission (PIE) characteristics, where nonconjugated poly(1,3-dicarbonyl)s exhibit intriguing chemical structure dependent aggregation-induced emission (AIE) type NTIL. This work therefore expands the monomer, method, chemical structure and property libraries of polymer chemistry, which may cause inspirations to polymerization methodology, PIE, AIE and NTIL.
基金the National Key Research and Development Project(2019YFC1908204)the Fund of Key Laboratory of Measurement and Control System for Offshore Environment(Fuqing Branch of Fujian Normal University)(No.SI-KF1604)+2 种基金the Key Project of Science and Technology Department of Fujian Province(No.2018H0013)the Key Natural Fund Project of Universities in Fujian Province(No.JZ160490)the Fuqing Branch of Fujian Normal University Cultivation Project(Nos.KY2017NS06,KY201609)。
文摘Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst,its morphology and structure were analyzed by means of FTIR,XRD,TGA,SEM,and TEM.The effects of the catalyst dosage,methyl orange(MO) initial concentration and solution pH on photocatalytic performance were also discussed.The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity.Under irradiation of visible light,0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6,then the MO solution(10 mg/L) was decolored by more than 99%,indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity.Therefore,the photodegradation kinetic mechanism of MO in aqueous solution is presumed.
基金supported by the National Key R&D Program of China(2019YFC1904500)National Natural Science Foundation of China(NSFC 21875037 and 51502036)+3 种基金Department of Ecology and Environment of Fujian Province(2021R024)the Young Top Talent of Fujian Young Eagle Program,Educational Commission of Fujian Province(2022G02022)Natural Science Foundation of Fujian Province(2023J02013 and 2019J06015)Natural Science Foundation of Fuzhou City(2022-Y-004).
文摘Developing electrodes with long lifespan and wide-temperature adaptability is crucial important to achieve high-performance sodium/potassium-ion batteries(SIBs/PIBs).Herein,the SnSe2-SePAN composite was fabricated for extraordinarily stable and wide-temperature range SIBs/PIBs through a coupling strategy between controllable electrospinning and selenylation,in which SnSe2 nanoparticles were uniformly encapsulated in the SePAN matrix.The unique structure of SnSe2-SePAN not only relieves drastic volume variation but also guarantees the structural integrity of the composite,endowing SnSe2-SePAN with excellent sodium/potassium storage properties.Consequently,SnSe2-SePAN displays a high sodium storage capacity and excellent feasibility in a wide working temperature range(-15 to 60℃:300 mAh g^(-1)/700 cycles/-15℃;352 mAh g^(-1)/100 cycles/60℃at 0.5 A g^(-1)).At room temperature,it delivers a record-ultralong cycling life of 192 mAh g^(-1)that exceeds 66000 cycles even at 15 A g^(-1).It exhibits extremely superb electrochemical performance in PIBs(157 mAh g^(-1)exceeding 15000 cycles at 5 A g^(-1)).The ex situ XRD and TEM results attest the conversion-alloy mechanism of SnSe2-SePAN.Also,computational calculations verify that SePAN takes an important role in intensifying the electrochemical performance of SnSe2-SePAN electrode.Therefore,this study breaks new ground on solving the polyselenide dissolution issue and improving the wide temperature workable performance of sodium/potassium storage.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109023,22179022,22209027Industry-University-Research Joint Innovation Project of Fujian Province,Grant/Award Number:2021H6006+2 种基金FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform,Grant/Award Number:2022-P-027Youth Innovation Fund of Fujian Province,Grant/Award Numbers:2021J05043,2022J05046Science and Technology。
文摘The indiscriminate utilization of nondegradable polyethylene terephthalate(PET)-based products has triggered serious environmental pollution that has to be resolved vigorously.A simple synthesis of N-doped carbon nanotubes from recycled PET(NCNTs_(r-PET))was developed by a nitric acid-assisted hydrothermal method.Experimental results and theoretical calculations show that the intrinsic defects in CNTs_(r-PET)would induce N-doping by NH_(3)generated from nitric acid during the hydrothermal process,thus producing the NCNTs_(r-PET).The life cycle assessment proves that the developed method for N-doped CNTs using r-PET as the carbon source is more environmentally friendly than the conventional chemical vapor deposition using acetylene as the carbon source.As a typical application,the NCNTs_(r-PET)delivered an impressive sodium storage capacity with an ultralong lifespan.This work not only provides a new route to upcycling waste plastics into valuable carbonaceous materials in an ecofriendly manner,but also reveals a basic understanding of the N-doping mechanism in carbonaceous materials.
基金National Natural Science Foundation of China,Grant/Award Numbers:22109023,22179022,22209027Industry‐University‐Research Joint Innovation Project of Fujian Province,Grant/Award Number:2021H6006+3 种基金Youth Innovation Fund of Fujian Province,Grant/Award Numbers:2022J05046,2021J05043FuXia Quan National Independent Innovation Demonstration Zone Collaborative Innovation Platform Project of Fuzhou Science and Technology Bureau,Grant/Award Number:2022‐P‐027Award Program for Fujian Minjiang Scholar ProfessorshipTalent Fund Program of Fujian Normal University。
文摘Potassium-ion batteries(PIBs)have garnered significant attention as a promising alternative to commercial lithium-ion batteries(LIBs)due to abundant and cost-efficient potassium reserves.However,the large size of potassium ions and the resulting sluggish reaction kinetics present major obstacles to the widespread use of PIBs.Herein,we present a simple method to ingeniously encapsulate SnS_(2)nanoparticles within sulfurized polyacrylonitrile(SPAN)fibers(SnS_(2)@SPAN)for serving as a high-performance PIB anode.The large interlayer spacing of SnS_(2)provides a fast transport channel for potassium ions during charge–discharge cycles,while the one-dimensional SPAN skeleton offers massive binding sites and shortens the diffusion path for potassium ions,facilitating faster reaction kinetics.Additionally,the excellent ductility of SPAN can effectively accommodate the large volume changes that occur in SnS_(2)upon potassium-ion insertion,thereby enhancing the cyclic stability of SnS_(2).Benefiting from the above advantages,the SnS_(2)@SPAN composites exhibit impressive cyclability over 500 cycles at 4 A g−1,with a capacity retention rate close to 100%.This study provides an effective approach for stabilizing high-capacity PIB anode materials with large volume variations.
基金financial supports from the National Natural Science Foundation of China (61801525)the Independent Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen University,OEMT-2022-ZRC-05)+5 种基金the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University,sklpme2023-3-5)Shenzhen Science and Technology Program (JCYJ20220530161809020&JCYJ20220818100415033)the Foundation of the State Key Laboratory of Transducer Technology (SKT2301)the Young Top Talent of Fujian Young Eagle Program of Fujian Provincethe Natural Science Foundation of Fujian Province (2023J02013)the National Key R&D Program of China (2022YFB2802051)。
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1904500)the National Natural Science Foundation of China(NSFC,Nos.51502036,21875037)+2 种基金Department of Ecology and Environment of Fujian Province(No.2021R024)the Young Top Talent of Fujian Young Eagle Program of Fujian Province,Educational Commission of Fujian Province(No.2022G02022)Natural Science Foundation of Distinguished Young Scholars for Fujian Province(No.2019J06015)。
文摘At present,there have been some reports on the application of metal phase selenide(1T-MSe_(2))in the field of energy storage.In this manuscript,a stable Sn-doped metal phase tungsten selenide(1T-WSe_(2)-Sn)was elaborately fabricated in situ by a simple calcination technique.N-doping was introduced by employing chitosan as precursor and nanoreactor,the Sn-doping induces 1T phase of WSe_(2)and enlarges the layer space to promote the electron/ion transport and structural stability.The optimized 1T-WSe_(2)-Sn electrode delivers prominent cycling lifespan(285 mAh·g^(-1)at 1.0 A·g^(-1)after 900 cycles)along with decent rate capability when applied as an anode of sodium ion batteries(SIBs).The specific capacity was determined to be of 460 mAh·g^(-1)at 0.1 A·g^(-1)after 100cycles.It also displays superior capacity of 183 mAh·g^(-1)at0.5 A·g^(-1)for 200 cycles when paired with Na_(3)V_(2)(PO_(4))_(3)cathode.Applied as the anode for potassium ion batteries(PIBs),it exhibits a satisfactory specific capacity of 345mAh·g^(-1)at 0.1 A·g^(-1)after 50 cycles.
基金the National Natural Science Foundation of China,Grant/Award Numbers:22179022,22109023,22209027,22209097the Industry-University-Research Joint Innovation Project of Fujian Province,Grant/Award Number:2021H6006+2 种基金the FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform,Grant/Award Number:2022-P-027the Youth Innovation Fund of Fujian Province,Grant/Award Numbers:2021J05043,2022J05046the Award Program for Fujian Minjiang Scholar Professorship,the Talent Fund Program of Fujian Normal University and Shenzhen Science and Technology Program,Grant/Award Numbers:JCYJ20220530142806015,JCYJ20220818101008018。
文摘Electrospun nanofibers(NFs)have shown excellent properties including high porosity,abundant active sites,controllable diameter,uniform and designable structure,high mechanical strength,and superior resistance to external destruction,which are ideal nanoreactors for in situ characterizations.Among various techniques,in situ transmission electron microscopy(TEM)has enabled operando observation at the atomic level due to its high temporal and spatial resolution combined with excellent sensitivity,which is of great importance for rational materials design and performance improvement.In this review,the basic knowledge of in situ TEM techniques and the advantages of electrospun nanoreactors for in situ TEM characterization are first introduced.The recent development in electrospun nanoreactors for studying the physical properties,structural evolution,phase transition,and formation mechanisms of materials using in situ TEM is then summarized.The electrochemical behaviors of carbon nanofibers(CNFs),metal/metal oxide NFs,and solidelectrolyte interphase for different rechargeable batteries are highlighted.Finally,challenges faced by electrospun nanoreactors for in situ TEM characterization are discussed and potential solutions are proposed to advance this field.