期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Systematic Method for Constructing Lewis Representations
1
作者 Lahbib Abbas Lahcen Bih +3 位作者 Khalid Yamni Abderrahim Elyahyaouy Abdelmalik El Attaoui Zahra Ramzi 《Open Journal of Inorganic Chemistry》 2024年第1期1-18,共18页
The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bon... The systematic method for constructing Lewis representations is a method for representing chemical bonds between atoms in a molecule. It uses symbols to represent the valence electrons of the atoms involved in the bond. Using a number of rules in a defined order, it is often better suited to complicated cases than the Lewis representation of atoms. This method allows us to determine the formal charge and oxidation number of each atom in the edifice more efficiently than other methods. 展开更多
关键词 Systematic Method Lewis Representation Chemical Bond Formal Charge Oxidation Number
下载PDF
Graphite Carbone Structure
2
作者 Lahbib Abbas Lahcen Bih +3 位作者 Khalid Yamni Abderrahim Elyahyaouy Abdelmalik El Attaoui Zahra Ramzi 《Crystal Structure Theory and Applications》 2024年第1期1-10,共10页
Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-di... Carbon graphite is a crystalline form of carbon consisting of layers of hexagonal carbon atoms arranged in a two-dimensional “graphene” structure. Graphene layers are stacked on top of each other, forming a three-dimensional structure with a high degree of anisotropy. The carbon atoms within each layer are linked together by strong covalent bonds, creating a strong, stable lattice structure. However, the layers themselves are held together by weak van der Waals forces, enabling them to slide easily over each other. The properties of carbon graphite are highly dependent on the orientation and alignment of the graphene layers. When the layers are aligned parallel to each other, the material exhibits high strength and stiffness along the alignment direction, but is weaker and more flexible in other directions. Carbon graphite is used in a variety of applications where high strength, rigidity and electrical conductivity are required. Some common applications include electrical contacts, electric motor brushes, and as a structural material in aerospace and defense applications. The aim of our work is to describe the structure of graphite, its physical and chemical properties and its applications. 展开更多
关键词 GRAPHITE GRAPHENE Hexagonal Structure HARDNESS RIGIDITY Electrical Con-ductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部