This paper proposes a simple and efficient distributed algorithm for calculating minimal dominating set in wireless sensor network. This method can avoid maintaining the connectivities between backbone hosts. Consider...This paper proposes a simple and efficient distributed algorithm for calculating minimal dominating set in wireless sensor network. This method can avoid maintaining the connectivities between backbone hosts. Considering that the hosts in mobile networks have different characteristics, this paper proposes a method of calculating minimal dominating set with weight. The nodes can be chosen to form a minimal dominating set when the network topology changes. For the host switch on/off operation, the updating algorithm was provided. The change in the status of a hostaffects only the status of hosts in the restricted vicinity. Simulation results show that the proposed method can ensure fewer dominators but with higher weight to form the minimal dominating set and the nodes can be adaptive to the changes of network topology.展开更多
A T-shape tube hydraulic bulge test under axial feeding force is carried out to characterize the mechanical properties of EN AW 5049-O and 6060-O aluminium alloys.The punch displacement,T-branch height and axial compr...A T-shape tube hydraulic bulge test under axial feeding force is carried out to characterize the mechanical properties of EN AW 5049-O and 6060-O aluminium alloys.The punch displacement,T-branch height and axial compressive force are recorded online during the experiment.An intelligent inverse identification framework combining the finite element method and numerical optimization algorithm is developed to determine material parameters by fitting simulated results to the experimental data iteratively.The identified constitutive parameters using the inverse modelling technique are compared with those determined by the theoretical analysis and uniaxial tensile test.The comparison shows that the predicted bulge height and punch force based on the material parameters obtained by the three methods are different and the inverse strategy produces the smallest gap between numerical and experimental values.It is possible to conclude that the hydraulic bulge test can be applied to characterize the stress-strain curve of tubular materials at the large strain scope,and the automatic inverse framework is a more accurate post-processing procedure to identify material constitutive parameters compared with the classical analytical model.展开更多
基金Supported by National Natural Science Foundation of China (No.60973141)Natural Science Foundation of Tianjin (No.09JCYBJC00300)
文摘This paper proposes a simple and efficient distributed algorithm for calculating minimal dominating set in wireless sensor network. This method can avoid maintaining the connectivities between backbone hosts. Considering that the hosts in mobile networks have different characteristics, this paper proposes a method of calculating minimal dominating set with weight. The nodes can be chosen to form a minimal dominating set when the network topology changes. For the host switch on/off operation, the updating algorithm was provided. The change in the status of a hostaffects only the status of hosts in the restricted vicinity. Simulation results show that the proposed method can ensure fewer dominators but with higher weight to form the minimal dominating set and the nodes can be adaptive to the changes of network topology.
基金The first author was supported by China Scholarship Council(CSC)(201706080020)from the Ministry of Education of China and expresses his appreciation to CSC for their financial support。
文摘A T-shape tube hydraulic bulge test under axial feeding force is carried out to characterize the mechanical properties of EN AW 5049-O and 6060-O aluminium alloys.The punch displacement,T-branch height and axial compressive force are recorded online during the experiment.An intelligent inverse identification framework combining the finite element method and numerical optimization algorithm is developed to determine material parameters by fitting simulated results to the experimental data iteratively.The identified constitutive parameters using the inverse modelling technique are compared with those determined by the theoretical analysis and uniaxial tensile test.The comparison shows that the predicted bulge height and punch force based on the material parameters obtained by the three methods are different and the inverse strategy produces the smallest gap between numerical and experimental values.It is possible to conclude that the hydraulic bulge test can be applied to characterize the stress-strain curve of tubular materials at the large strain scope,and the automatic inverse framework is a more accurate post-processing procedure to identify material constitutive parameters compared with the classical analytical model.