期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
氢氧化铝纳米片:结构依赖性癌症化疗药物的储运(英文) 被引量:1
1
作者 LI Xia SHENASHEN Mohamed A +2 位作者 MEKAWY Moataz TANIGUCHI Akiyoshi EI-SAFTY Sherif A 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2020年第2期250-256,共7页
Alum has an excellent safety record and is the only licensed inorganic adjuvant for human vaccines.However,the exploration of alum nanosheets as chemotherapy drug delivery system,especially the clarification about the... Alum has an excellent safety record and is the only licensed inorganic adjuvant for human vaccines.However,the exploration of alum nanosheets as chemotherapy drug delivery system,especially the clarification about the relationship between structures and drug loading properties,is totally insufficient.Herein,aluminum hydroxides(AlOOH)nanosheets with tunable specific surface area and pore size were synthesized by adjusting the synthesis time in the presence of triblock copolymers.The obtained materials exhibited the highest surface area about 470 m2/g.The structure-dependent chemotherapy drug loading capability for AlOOH nanosheets was observed:the higher specific surface area and pore size are,the higher amount of chemotherapy drug is loaded.AlOOH nanosheets loaded with doxorubicin showed a pH-dependent sustained release behavior with quick release in low pH about 5 and slow release in pH around 7.4.Doxorubicin-loaded AlOOH nanosheets exhibited much higher cancer cellular uptake efficiency than that in free form by flow cytometry.Moreover,doxorubicin-loaded AlOOH nanosheets with high specific surface area showed an increased cellular uptake efficiency and enhanced ratios of apoptosis and necrosis,compared with those showing low specific surface area.Therefore,AlOOH nanosheets are promising materials as chemotherapy drug delivery system. 展开更多
关键词 aluminum hydroxide NANOSHEET cancer chemotherapy STORAGE drug delivery
下载PDF
Collision mitigation and vehicle transportation safety using integrated vehicle dynamics control systems
2
作者 Mustafa Elkady Ahmed Elmaralebi +1 位作者 John Maclntyre Mohammed Alhariri 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第1期41-60,共20页
The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset fron... The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the ve- hicle's occupant in case of offset frontal vehicle-to-vehicle collision. A unique 6-degree-of- freedom (6-DOF) vehicle dynamics/crash mathematical model and a simplified lumped mass occupant model are developed. The first model is used to define the vehicle body crash parameters and it integrates a vehicle dynamics model with a vehicle front-end structure model. The second model aims to predict the effect of VDCS on the kinematics of the occupant. It is shown from the numerical simulations that the vehicle dynamics/crash response and occupant behaviour can be captured and analysed quickly and accurately. Yurthermore, it is shown that the VDCS can affect the crash characteristics positively and the occupant behaviour is improved. 展开更多
关键词 Vehicle transportation safety Collision mitigation Vehicle dynamics and control Mathematical modelling Occupant kinematics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部