The aim of this research is to identify the most suitable land for forestry, afforestation and rangeland management in Hamadan province. This research has been accomplished using Makhdoum's model. In this research 30...The aim of this research is to identify the most suitable land for forestry, afforestation and rangeland management in Hamadan province. This research has been accomplished using Makhdoum's model. In this research 30 digital data layers are used. The Geographic Information System (GIS) has been used as main tool and overlay method has been used to implement the mentioned model. The results of this research revealed that the extent of favorite areas for fifth grade forestry, favorite areas for fourth grade afforestation, and favorite areas for third grade and fourth grade range management in the studied area. Based on the results of this research, the studied area has limited potentials for forestry and afforestation activities. The obtained results of evaluation also showed that the rangelands of Hamadan province are extremely poor. Since the rangelands have a substantial role in preservation of soil and water, therefore it is necessary to take appropriate measures for better exploitation of rangelands.展开更多
Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmente...Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmented landscapes are facing genetic and demographic threats. Evaluating the spatial distribution pattern of Naja oxiana, identifying core habitat patches and improving landscape connectivity among the patches have a significant role in the long-term survival of the species. This study predicts the spatial distribution map of the Caspian cobra considering the factors affecting the predictive power of the distribution models, including sampling bias in presence points, correct selection of background locations, and input model parameters. The sampling bias in presence points was removed using spatial filtering. Several models were run using 19 environmental variables that eventually led to the selection of the effective habitat variables and best MaxEnt distribution model. We also used an ensemble model(EM) of habitat suitability methods to predict the potential habitats of the species. Topographical roughness, shrublands, average annual precipitation, and sparse rangeland with a density of ≤ 20% had the most effect on the spatial distribution of Caspian cobra. The evaluation of models confirmed that the EM has more predictive performance than MaxEnt in predicting the distribution of Naja oxiana.展开更多
The overall goal of this study is investigating the environmental impacts of using wastewater effluent of industrial states in irrigation of green space. For this purpose, industrial state of Shokouhieh in Qom Provinc...The overall goal of this study is investigating the environmental impacts of using wastewater effluent of industrial states in irrigation of green space. For this purpose, industrial state of Shokouhieh in Qom Province in central of Iran was selected as a case study. Firstly, the quality and quantity of inputting wastewater into refinery and outputting wastewater effluent were measured on important parameters of pH, TDS, TSS, COD, BOD and wastewater temperature in refinery laboratory of industrial state of Qom Shokouhieh during 12 months from March 2012 to March 2013. Then analysis of chemical, biological and physical indicators of irrigation wastewater (effluent) and measurement of heavy metals were done in June 2012 and January 2013 according to the standards instruction for the water and wastewater treatment. Also, heavy metals, EC, pH, and Mg2+, Ca2+, Na+, k+ of soil of industrial estate of Qom Shokouhieh were studied. Then, Rapid Impact Assessment Method (RIAM) and Entropy Method were used to analyze the data. In Rapid Impact Assessment Method, socio-cultural, physicochemical, biological and economic environments get the highest negative impacts respectively. In Entropy Method after weighting the environmental factors, public health and other disease parameters with the weight of 0.147, soil chemical properties with the weight of 0.136, soil toxicity with the weight of 0.126 were allocated the first rate up to the third rate respectively. After comparing the results of these two methods with each other, the main limitation of using wastewater effluent of industrial estate of Qom Shokouhie in irrigation of green space is entering chemical pollutants (nitrate) into groundwater, salinity and toxicity of soil of industrial state and endangerment of workers and labors public health who work in industrial state of Qom Shokouhie (specially the labors who exposure directly with the wastewater effluent and labors work in refinery).展开更多
The Casablanca landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 4000 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the fifteen old ...The Casablanca landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 4000 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the fifteen old sandstone quarries. At the site of this landfill, the groundwaters circulate deeply (10 m) in the fractured aquiferous quartzites, the site has never been sealed before its opening. The aim of this study is the characterization the groundwater quality around the landfill, to delimit the contaminated zone and the factors controlling the extent of groundwater contamination. To evaluate groundwater pollution due to this landfill, piezometric level and geochemical analyses have been carried out on 19 wells. The results of geochemical analyses show an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 11 mS/cm in electric conductivity, 1400 mg/L in bicarbonates, 275 mg/L in chemical oxygen demand, 2616 and 100 mg/L respectively in chlorides and sulfate, 269.5 mg/L in nitrates, 50 - 100 mg/L in cadmium, and 40 - 230 μg/L in chromium. These concentrations widely exceed the standard values for potable and irrigation water. Several determining factors in the evolution of groundwater contamination have been highlighted, such as: depth of the water table, permeability of unsaturated zone and lineaments, effective infiltration, absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.展开更多
Objective:To explore the impact of Ficus carica fruit aqueous extract on fertility parameters in streptozotocin(STZ)-induced male rats.Methods:Twenty-four male Sprague-Dawley rats were divided into four different grou...Objective:To explore the impact of Ficus carica fruit aqueous extract on fertility parameters in streptozotocin(STZ)-induced male rats.Methods:Twenty-four male Sprague-Dawley rats were divided into four different groups.All groups except a normal control group were induced with 50 mg/kg of streptozotocin(STZ)intravenously to induce diabetes.A positive control group was treated with an antidiabetic drug,metformin(500 mg/kg)whereas a negative control group remained untreated throughout the experiment.Meanwhile,another diabetic rat group received treatment with 400 mg/kg of aqueous Ficus carica fruit extract.Rats in the treatment group were administered Ficus carica fruit aqueous extract daily through forcefeeding via oral gavage for a 21-day period.Assessments included the sperm quality(count,motility and morphology),histology of the testes,serum testosterone and fasting blood glucose(FBG)level.Results:The FBG level of the Ficus carica-treated rats exhibited a significant decrease compared to the negative control group(P<0.05).Sperm quality analysis also indicated that the aqueous Ficus carica extract had significant positive effects on sperm count and motility(P<0.05).The histology of the testes in Ficus caricatreated rats revealed an improved cell arrangement in the germinal cell layer.Furthermore,serum testosterone level showed an increment in the Ficus carica treatment group in comparison to the negative control group.Conclusions:Our findings provide compelling evidence for the profertility and anti-hyperglycemic properties of aqueous Ficus carica fruit extract in diabetic-induced male rats.展开更多
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte...In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.展开更多
Afghanistan has faced extreme climatic crises such as drought,rising temperature,and scarce precipitation,and these crises will likely worsen in the future.Reduction in crop yield can affect food security in Afghanist...Afghanistan has faced extreme climatic crises such as drought,rising temperature,and scarce precipitation,and these crises will likely worsen in the future.Reduction in crop yield can affect food security in Afghanistan,where the majority of population and economy are completely dependent on agriculture.This study assessed the interaction between climate change and crop yield in Kabul of Afghanistan during the reference(1990–2020)and future(2025–2100)periods.Climate data(1990–2020)were collected from four meteorological stations and three local organizations,and wheat yield data(1990–2020)were acquired from the United States Agriculture Department.Data during the reference period(1990–2020)were used for the validation and calibration of the statistical downscaling models such as the Statistical Downscaling Model(SDSM)and Long Ashton Research Station Weather Generator(LARS-WG).Furthermore,the auto-regression model was used for trend analysis.The results showed that an increase in the average annual temperature of 2.15℃,2.89℃,and 4.13℃will lead to a reduction in the wheat yield of 9.14%,10.20%,and 12.00%under Representative Concentration Pathway(RCP)2.6,RCP4.5,and RCP8.5 during the future period(2025–2100),respectively.Moreover,an increase in the annual maximum temperature of 1.79℃,2.48℃,and 3.74℃also causes a significant reduction in the wheat yield of 2.60%,3.60%,and 10.50%under RCP2.6,RCP4.5,and RCP8.5,respectively.Furthermore,an increase in the annual minimum temperature of 2.98℃,2.23℃,and 4.30℃can result in an increase in the wheat yield of 6.50%,4.80%,and 9.30%under RCP2.6,RCP4.5,and RCP8.5,respectively.According to the SDSM,the decrease of the average monthly precipitation of 4.34%,4.10%,and 5.13%results in a decrease in the wheat yield of 2.60%,2.36%,and 3.18%under RCP2.6,RCP4.5,and RCP8.5,respectively.This study suggests that adaptation strategies can be applied to minimize the consequences of climate change on agricultural production.展开更多
The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedi...The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedimentology,seismic sections,and well logs.The Sab'atayn Formation(Tithonian age)is represented by a series of clastic and evaporites that were deposited under fluvio-deltaic to prodeltaic settings.It is divided into four members including Yah(at the base),upwards to Seen,Alif,and Safir at the top.Two third-order depositional sequences were determined for the Tithonian succession which were separated by three sequence boundaries.These sequences were classified into their systems tracts signifying several sedimentation patterns of progradational,aggradational,and retrogradational parasequence sets.The first depositional sequence corresponds to the early-middle Tithonian Yah and Seen units that can be classified into lowstand,transgressive,and highstand systems tracts.The second sequence comprises the late Tithonian Alif unit that can be subdivided into transgressive and highstand systems tracts.The sandy deposits of the Alif Member(highstand deposits)represent the most productive hydrocarbon reservoir in the basin.The Upper Jurassic sediments in the study area were resulted from a combination of eustatic and tectonic effects.展开更多
Textile dyes are dramatic sources of pollution and non-aesthetic disturbance of aquatic life and therefore represent a potential risk of bioaccumulation that can affect living species.It is imperative to reduce or eli...Textile dyes are dramatic sources of pollution and non-aesthetic disturbance of aquatic life and therefore represent a potential risk of bioaccumulation that can affect living species.It is imperative to reduce or eliminate these dyes from liquid effluents with innovative biomaterials and methods.Therefore,this research aims to highlight the performance of Capparis spinosa L waste-activated carbon(CSLW-AC)adsorbent to remove crystal violet(CV)from an aqueous solution.The mechanism of CV adsorption on CSLW-AC was evaluated based on the coupling of experimental data and different characterization techniques.The efficiency of the CSLW-AC material reflected by the equilibrium adsorption capacity of CV could reach more than 195.671 mg·g^(–1) when 0.5 g·L^(–1) of CSLW-AC(Particle size≤250μm)is introduced into the CV of initial concentration of 100 mg·L^(–1) at pH 6 and temperature 65℃ and in the presence of potassium ions after 60 min of contact time according to the one parameter at a time studies.The adsorption behavior of CV on CSLW-AC was found to be consistent with the pseudo-second-order kinetic model and Frumkin's linear isothermal model.The thermodynamic aspects indicate that the process is physical,spontaneous,and endothermic.The optimization of the process by the Box Behnken design of experiments resulted in an adsorption capacity approaching 183.544 mg·g^(–1)([CV]=100 mg·L^(–1) and[CSLW-AC]=0.5 g·L^(–1) at 35 min).The results of the Lactuca sativa seeds germination in treated CV(70%),adsorbent solvent and thermal regeneration(more than 5 cycles),and process cost analysis(1.0484 USD·L^(–1))tests are encouraging and promising for future exploitations of the CSLW-AC material in different industrial fields.展开更多
Groundwater resources are the main sources of water used to supply drinking water to the population of the Ouémé Delta via the Continental Terminal aquifer. Urbanization, population growth, and agricultural ...Groundwater resources are the main sources of water used to supply drinking water to the population of the Ouémé Delta via the Continental Terminal aquifer. Urbanization, population growth, and agricultural and industrial activities have resulted in a deterioration in the quality of these resources. To assess the quality of the delta’s groundwater and its suitability for human consumption and irrigation, a total of fourteen (14) physico-chemical parameters were analyzed in some forty existing water points between September 2020 and March 2021, using standard water analysis techniques. The values obtained were compared with the potability standards recommended by the World Health Organization (WHO) and the Republic of Benin and were subjected to statistical analysis (principal component analysis (PCA)). In addition, methods for determining the suitability of water for irrigation were used. The results showed that the waters are acidic to slightly neutral and influenced by ambient temperature. In addition, the waters are moderately mineralized, with conductivities (24 - 1205 μS/cm) in line with WHO standards. A comparison of the analytical results of the WHO (2017) and Benin (2001) standards indicates that the majority of the waters studied are of good quality for all the chemical parameters considered. Nevertheless, some samples show levels of nitrates (21%), potassium (14% to 16%), calcium (13%), ammonium (12%), nitrites (8%) and bicarbonates (10%) over their respective standards. The Wilcox and Riverside diagrams indicate that the majority of waters (90%) have excellent suitability for irrigation and no negative effect on soil fertilization.展开更多
This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while...This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of two cells (FV2a and FV2b), each designed to reduce various physicochemical and microbiological pollutants from wastewater. Quantitative analyses show significant reductions in electrical conductivity (from 1331 to 1061 μS/cm), biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand (COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly in decreasing dissolved salts and BOD5 to remarkably low levels. Microbiological assessments reveal a substantial reduction in fecal coliforms, from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a complete elimination of helminth eggs, achieving a 100% reduction rate in FV2. The study highlights the impact of design parameters, such as filter material, media depth, and plant species selection, on treatment outcomes. The findings suggest that the judicious choice of these components is critical for optimizing pollutant removal. For instance, different filtration materials show varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant reduction rates. In conclusion, VFFs emerge as a promising solution for wastewater treatment, underscoring the importance of design optimization to enhance system efficiency. Continuous monitoring and adaptation of treatment practices are imperative to ensure water quality, allowing for safe environmental discharge or water reuse. The research advocates for ongoing improvements in wastewater treatment technologies, considering the environmental challenges of the current era. The study concludes with a call for further research to maximize the effectiveness of VFFs in water management.展开更多
The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Further...The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Furthermore,climate change frequently exposes this basin to drought,which negatively affects soil and water conservation.However,recent studies have rarely shown how soil reacts to drought,such as soil erosion.Therefore,the purpose of this study is to evaluate the relationship between drought and soil erosion in the Langat River Basin.We analyzed drought indices using Landsat 8 satellite images in November 2021,and created the normalized differential water index(NDWI)via Landsat 8 data to produce a drought map.We used the revised universal soil loss equation(RUSLE)model to predict soil erosion.We verified an association between the NDWI and soil erosion data using a correlation analysis.The results revealed that the southern and northern regions of the study area experienced drought events.We predicted an average annual soil erosion of approximately 58.11 t/(hm^(2)·a).Analysis of the association between the NDWI and soil erosion revealed a strong positive correlation,with a Pearson correlation coefficient of 0.86.We assumed that the slope length and steepness factor was the primary contributor to soil erosion in the study area.As a result,these findings can help authorities plan effective measures to reduce the impacts of drought and soil erosion in the future.展开更多
This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two di...This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two distinct vegetative cells, Vetiver and Typha, in the pursuit of sustainable wastewater management strategies for rural scholastic institutions. A synergistic approach was employed, integrating on-site surveys for site-specific insights and laboratory analyses to quantify the pollutant loads pre- and post-treatment. Our findings indicate that both Vetiver and Typha-infused filter beds significantly reduce most contaminants, with particular success in diminishing chemical oxygen demand (COD) and biological oxygen demand (BOD5). Vetiver was notable for its superior reduction of COD, achieving an average effluent concentration of 74 mg/L, in contrast to Typha’s 155 mg/L. Conversely, Typha excelled in suspended solids removal, registering 1 mg/L against Vetiver’s 3 mg/L. While both systems notably surpassed the target metrics across several indicators, including fecal coliform reduction, our results pinpoint the need for refinement in phosphate remediation. Conclusively, the study underscores the efficacy of both Vetiver and Typha systems in rural wastewater treatment contexts, with their integrative application potentially paving the way for enhanced system robustness and efficiency. The outcomes herein highlight the imperative for continued research to further hone these ecological treatment modalities, especially concerning phosphate elimination.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Geospatial technologies can be leveraged to optimize the available resources for better productivity and sustainability. The resources can be human, software and hardware equipment and their effective management can e...Geospatial technologies can be leveraged to optimize the available resources for better productivity and sustainability. The resources can be human, software and hardware equipment and their effective management can enhance operational efficiency through better and informed decision making. This review article examines the application of geospatial technologies, including GPS, GIS, and remote sensing, for optimizing resource utilization in livestock management. It compares these technologies to traditional livestock management practices and highlights their potential to improve animal tracking, feed intake monitoring, disease monitoring, pasture selection, and rangeland management. Previously, animal management practices were labor-intensive, time-consuming, and required more precision for optimal animal health and productivity. Digital technologies, including Artificial Intelligence (AI) and Machine Learning (ML) have transformed the livestock sector through precision livestock management. However, major challenges such as high cost, availability and accessibility to these technologies have deterred their implementation. To fully realize the benefits and tremendous contribution of these digital technologies and to address the challenges associated with their widespread adoption, the review proposes a collaborative approach between different stakeholders in the livestock sector including livestock farmers, researchers, veterinarians, industry professionals, technology developers, the private sector, financial institutions and government to share knowledge and expertise. The collaboration would facilitate the integration of various strategies to ensure the effective and wide adoption of digital technologies in livestock management by supporting the development of user-friendly and accessible tools tailored to specific livestock management and production systems.展开更多
The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃...The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.展开更多
文摘The aim of this research is to identify the most suitable land for forestry, afforestation and rangeland management in Hamadan province. This research has been accomplished using Makhdoum's model. In this research 30 digital data layers are used. The Geographic Information System (GIS) has been used as main tool and overlay method has been used to implement the mentioned model. The results of this research revealed that the extent of favorite areas for fifth grade forestry, favorite areas for fourth grade afforestation, and favorite areas for third grade and fourth grade range management in the studied area. Based on the results of this research, the studied area has limited potentials for forestry and afforestation activities. The obtained results of evaluation also showed that the rangelands of Hamadan province are extremely poor. Since the rangelands have a substantial role in preservation of soil and water, therefore it is necessary to take appropriate measures for better exploitation of rangelands.
文摘Over recent years, the population of Caspian cobra Naja oxiana has declined in its distribution range in Iran due to habitat destruction and overhunting. Consequently, their small and isolated populations in fragmented landscapes are facing genetic and demographic threats. Evaluating the spatial distribution pattern of Naja oxiana, identifying core habitat patches and improving landscape connectivity among the patches have a significant role in the long-term survival of the species. This study predicts the spatial distribution map of the Caspian cobra considering the factors affecting the predictive power of the distribution models, including sampling bias in presence points, correct selection of background locations, and input model parameters. The sampling bias in presence points was removed using spatial filtering. Several models were run using 19 environmental variables that eventually led to the selection of the effective habitat variables and best MaxEnt distribution model. We also used an ensemble model(EM) of habitat suitability methods to predict the potential habitats of the species. Topographical roughness, shrublands, average annual precipitation, and sparse rangeland with a density of ≤ 20% had the most effect on the spatial distribution of Caspian cobra. The evaluation of models confirmed that the EM has more predictive performance than MaxEnt in predicting the distribution of Naja oxiana.
文摘The overall goal of this study is investigating the environmental impacts of using wastewater effluent of industrial states in irrigation of green space. For this purpose, industrial state of Shokouhieh in Qom Province in central of Iran was selected as a case study. Firstly, the quality and quantity of inputting wastewater into refinery and outputting wastewater effluent were measured on important parameters of pH, TDS, TSS, COD, BOD and wastewater temperature in refinery laboratory of industrial state of Qom Shokouhieh during 12 months from March 2012 to March 2013. Then analysis of chemical, biological and physical indicators of irrigation wastewater (effluent) and measurement of heavy metals were done in June 2012 and January 2013 according to the standards instruction for the water and wastewater treatment. Also, heavy metals, EC, pH, and Mg2+, Ca2+, Na+, k+ of soil of industrial estate of Qom Shokouhieh were studied. Then, Rapid Impact Assessment Method (RIAM) and Entropy Method were used to analyze the data. In Rapid Impact Assessment Method, socio-cultural, physicochemical, biological and economic environments get the highest negative impacts respectively. In Entropy Method after weighting the environmental factors, public health and other disease parameters with the weight of 0.147, soil chemical properties with the weight of 0.136, soil toxicity with the weight of 0.126 were allocated the first rate up to the third rate respectively. After comparing the results of these two methods with each other, the main limitation of using wastewater effluent of industrial estate of Qom Shokouhie in irrigation of green space is entering chemical pollutants (nitrate) into groundwater, salinity and toxicity of soil of industrial state and endangerment of workers and labors public health who work in industrial state of Qom Shokouhie (specially the labors who exposure directly with the wastewater effluent and labors work in refinery).
文摘The Casablanca landfill is one among many uncontrolled dumping sites in Morocco with no bottom liner. About 4000 tons/day of solid wastes from mixed urban and industrial origins are placed directly on the fifteen old sandstone quarries. At the site of this landfill, the groundwaters circulate deeply (10 m) in the fractured aquiferous quartzites, the site has never been sealed before its opening. The aim of this study is the characterization the groundwater quality around the landfill, to delimit the contaminated zone and the factors controlling the extent of groundwater contamination. To evaluate groundwater pollution due to this landfill, piezometric level and geochemical analyses have been carried out on 19 wells. The results of geochemical analyses show an important qualitative degradation of the groundwater, especially in the parts situated in the down gradient area and in direct proximity to the landfill. In these polluted zones, we have observed the following values: higher than 11 mS/cm in electric conductivity, 1400 mg/L in bicarbonates, 275 mg/L in chemical oxygen demand, 2616 and 100 mg/L respectively in chlorides and sulfate, 269.5 mg/L in nitrates, 50 - 100 mg/L in cadmium, and 40 - 230 μg/L in chromium. These concentrations widely exceed the standard values for potable and irrigation water. Several determining factors in the evolution of groundwater contamination have been highlighted, such as: depth of the water table, permeability of unsaturated zone and lineaments, effective infiltration, absence of a system for leachate drainage. So, to reduce the pollution risks of the groundwater, it is necessary to set a system of collection, drainage and treatment of landfill leachates and to emplace an impermeable surface at the site of landfill, in order to limit the infiltration of leachate.
文摘Objective:To explore the impact of Ficus carica fruit aqueous extract on fertility parameters in streptozotocin(STZ)-induced male rats.Methods:Twenty-four male Sprague-Dawley rats were divided into four different groups.All groups except a normal control group were induced with 50 mg/kg of streptozotocin(STZ)intravenously to induce diabetes.A positive control group was treated with an antidiabetic drug,metformin(500 mg/kg)whereas a negative control group remained untreated throughout the experiment.Meanwhile,another diabetic rat group received treatment with 400 mg/kg of aqueous Ficus carica fruit extract.Rats in the treatment group were administered Ficus carica fruit aqueous extract daily through forcefeeding via oral gavage for a 21-day period.Assessments included the sperm quality(count,motility and morphology),histology of the testes,serum testosterone and fasting blood glucose(FBG)level.Results:The FBG level of the Ficus carica-treated rats exhibited a significant decrease compared to the negative control group(P<0.05).Sperm quality analysis also indicated that the aqueous Ficus carica extract had significant positive effects on sperm count and motility(P<0.05).The histology of the testes in Ficus caricatreated rats revealed an improved cell arrangement in the germinal cell layer.Furthermore,serum testosterone level showed an increment in the Ficus carica treatment group in comparison to the negative control group.Conclusions:Our findings provide compelling evidence for the profertility and anti-hyperglycemic properties of aqueous Ficus carica fruit extract in diabetic-induced male rats.
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
文摘In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.
文摘Afghanistan has faced extreme climatic crises such as drought,rising temperature,and scarce precipitation,and these crises will likely worsen in the future.Reduction in crop yield can affect food security in Afghanistan,where the majority of population and economy are completely dependent on agriculture.This study assessed the interaction between climate change and crop yield in Kabul of Afghanistan during the reference(1990–2020)and future(2025–2100)periods.Climate data(1990–2020)were collected from four meteorological stations and three local organizations,and wheat yield data(1990–2020)were acquired from the United States Agriculture Department.Data during the reference period(1990–2020)were used for the validation and calibration of the statistical downscaling models such as the Statistical Downscaling Model(SDSM)and Long Ashton Research Station Weather Generator(LARS-WG).Furthermore,the auto-regression model was used for trend analysis.The results showed that an increase in the average annual temperature of 2.15℃,2.89℃,and 4.13℃will lead to a reduction in the wheat yield of 9.14%,10.20%,and 12.00%under Representative Concentration Pathway(RCP)2.6,RCP4.5,and RCP8.5 during the future period(2025–2100),respectively.Moreover,an increase in the annual maximum temperature of 1.79℃,2.48℃,and 3.74℃also causes a significant reduction in the wheat yield of 2.60%,3.60%,and 10.50%under RCP2.6,RCP4.5,and RCP8.5,respectively.Furthermore,an increase in the annual minimum temperature of 2.98℃,2.23℃,and 4.30℃can result in an increase in the wheat yield of 6.50%,4.80%,and 9.30%under RCP2.6,RCP4.5,and RCP8.5,respectively.According to the SDSM,the decrease of the average monthly precipitation of 4.34%,4.10%,and 5.13%results in a decrease in the wheat yield of 2.60%,2.36%,and 3.18%under RCP2.6,RCP4.5,and RCP8.5,respectively.This study suggests that adaptation strategies can be applied to minimize the consequences of climate change on agricultural production.
文摘The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedimentology,seismic sections,and well logs.The Sab'atayn Formation(Tithonian age)is represented by a series of clastic and evaporites that were deposited under fluvio-deltaic to prodeltaic settings.It is divided into four members including Yah(at the base),upwards to Seen,Alif,and Safir at the top.Two third-order depositional sequences were determined for the Tithonian succession which were separated by three sequence boundaries.These sequences were classified into their systems tracts signifying several sedimentation patterns of progradational,aggradational,and retrogradational parasequence sets.The first depositional sequence corresponds to the early-middle Tithonian Yah and Seen units that can be classified into lowstand,transgressive,and highstand systems tracts.The second sequence comprises the late Tithonian Alif unit that can be subdivided into transgressive and highstand systems tracts.The sandy deposits of the Alif Member(highstand deposits)represent the most productive hydrocarbon reservoir in the basin.The Upper Jurassic sediments in the study area were resulted from a combination of eustatic and tectonic effects.
文摘Textile dyes are dramatic sources of pollution and non-aesthetic disturbance of aquatic life and therefore represent a potential risk of bioaccumulation that can affect living species.It is imperative to reduce or eliminate these dyes from liquid effluents with innovative biomaterials and methods.Therefore,this research aims to highlight the performance of Capparis spinosa L waste-activated carbon(CSLW-AC)adsorbent to remove crystal violet(CV)from an aqueous solution.The mechanism of CV adsorption on CSLW-AC was evaluated based on the coupling of experimental data and different characterization techniques.The efficiency of the CSLW-AC material reflected by the equilibrium adsorption capacity of CV could reach more than 195.671 mg·g^(–1) when 0.5 g·L^(–1) of CSLW-AC(Particle size≤250μm)is introduced into the CV of initial concentration of 100 mg·L^(–1) at pH 6 and temperature 65℃ and in the presence of potassium ions after 60 min of contact time according to the one parameter at a time studies.The adsorption behavior of CV on CSLW-AC was found to be consistent with the pseudo-second-order kinetic model and Frumkin's linear isothermal model.The thermodynamic aspects indicate that the process is physical,spontaneous,and endothermic.The optimization of the process by the Box Behnken design of experiments resulted in an adsorption capacity approaching 183.544 mg·g^(–1)([CV]=100 mg·L^(–1) and[CSLW-AC]=0.5 g·L^(–1) at 35 min).The results of the Lactuca sativa seeds germination in treated CV(70%),adsorbent solvent and thermal regeneration(more than 5 cycles),and process cost analysis(1.0484 USD·L^(–1))tests are encouraging and promising for future exploitations of the CSLW-AC material in different industrial fields.
文摘Groundwater resources are the main sources of water used to supply drinking water to the population of the Ouémé Delta via the Continental Terminal aquifer. Urbanization, population growth, and agricultural and industrial activities have resulted in a deterioration in the quality of these resources. To assess the quality of the delta’s groundwater and its suitability for human consumption and irrigation, a total of fourteen (14) physico-chemical parameters were analyzed in some forty existing water points between September 2020 and March 2021, using standard water analysis techniques. The values obtained were compared with the potability standards recommended by the World Health Organization (WHO) and the Republic of Benin and were subjected to statistical analysis (principal component analysis (PCA)). In addition, methods for determining the suitability of water for irrigation were used. The results showed that the waters are acidic to slightly neutral and influenced by ambient temperature. In addition, the waters are moderately mineralized, with conductivities (24 - 1205 μS/cm) in line with WHO standards. A comparison of the analytical results of the WHO (2017) and Benin (2001) standards indicates that the majority of the waters studied are of good quality for all the chemical parameters considered. Nevertheless, some samples show levels of nitrates (21%), potassium (14% to 16%), calcium (13%), ammonium (12%), nitrites (8%) and bicarbonates (10%) over their respective standards. The Wilcox and Riverside diagrams indicate that the majority of waters (90%) have excellent suitability for irrigation and no negative effect on soil fertilization.
文摘This paper evaluates the efficacy of two sequential vertical flow filters (VFF), FV1 and FV2, implanted with Typha, in a pilot-scale wastewater treatment system. FV1 comprises three cells (FV1a, FV1b, and FV1c), while FV2 consists of two cells (FV2a and FV2b), each designed to reduce various physicochemical and microbiological pollutants from wastewater. Quantitative analyses show significant reductions in electrical conductivity (from 1331 to 1061 μS/cm), biochemical oxygen demand (BOD5 from 655.6 to 2.3 mg/L), chemical oxygen demand (COD from 1240 to 82.2 mg/L), total nitrogen (from 188 to 37.3 mg/L), and phosphates (from 70.9 to 14.6 mg/L). Notably, FV2 outperforms FV1, particularly in decreasing dissolved salts and BOD5 to remarkably low levels. Microbiological assessments reveal a substantial reduction in fecal coliforms, from an initial concentration of 7.5 log CFU/100mL to 3.7 log CFU/100mL, and a complete elimination of helminth eggs, achieving a 100% reduction rate in FV2. The study highlights the impact of design parameters, such as filter material, media depth, and plant species selection, on treatment outcomes. The findings suggest that the judicious choice of these components is critical for optimizing pollutant removal. For instance, different filtration materials show varying efficacies, with silex plus river gravel in FV1c achieving superior pollutant reduction rates. In conclusion, VFFs emerge as a promising solution for wastewater treatment, underscoring the importance of design optimization to enhance system efficiency. Continuous monitoring and adaptation of treatment practices are imperative to ensure water quality, allowing for safe environmental discharge or water reuse. The research advocates for ongoing improvements in wastewater treatment technologies, considering the environmental challenges of the current era. The study concludes with a call for further research to maximize the effectiveness of VFFs in water management.
文摘The Langat River Basin in Malaysia is vulnerable to soil erosion risks because of its exposure to intensive land use activities and its topography,which primarily consists of steep slopes and mountainous areas.Furthermore,climate change frequently exposes this basin to drought,which negatively affects soil and water conservation.However,recent studies have rarely shown how soil reacts to drought,such as soil erosion.Therefore,the purpose of this study is to evaluate the relationship between drought and soil erosion in the Langat River Basin.We analyzed drought indices using Landsat 8 satellite images in November 2021,and created the normalized differential water index(NDWI)via Landsat 8 data to produce a drought map.We used the revised universal soil loss equation(RUSLE)model to predict soil erosion.We verified an association between the NDWI and soil erosion data using a correlation analysis.The results revealed that the southern and northern regions of the study area experienced drought events.We predicted an average annual soil erosion of approximately 58.11 t/(hm^(2)·a).Analysis of the association between the NDWI and soil erosion revealed a strong positive correlation,with a Pearson correlation coefficient of 0.86.We assumed that the slope length and steepness factor was the primary contributor to soil erosion in the study area.As a result,these findings can help authorities plan effective measures to reduce the impacts of drought and soil erosion in the future.
文摘This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two distinct vegetative cells, Vetiver and Typha, in the pursuit of sustainable wastewater management strategies for rural scholastic institutions. A synergistic approach was employed, integrating on-site surveys for site-specific insights and laboratory analyses to quantify the pollutant loads pre- and post-treatment. Our findings indicate that both Vetiver and Typha-infused filter beds significantly reduce most contaminants, with particular success in diminishing chemical oxygen demand (COD) and biological oxygen demand (BOD5). Vetiver was notable for its superior reduction of COD, achieving an average effluent concentration of 74 mg/L, in contrast to Typha’s 155 mg/L. Conversely, Typha excelled in suspended solids removal, registering 1 mg/L against Vetiver’s 3 mg/L. While both systems notably surpassed the target metrics across several indicators, including fecal coliform reduction, our results pinpoint the need for refinement in phosphate remediation. Conclusively, the study underscores the efficacy of both Vetiver and Typha systems in rural wastewater treatment contexts, with their integrative application potentially paving the way for enhanced system robustness and efficiency. The outcomes herein highlight the imperative for continued research to further hone these ecological treatment modalities, especially concerning phosphate elimination.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘Geospatial technologies can be leveraged to optimize the available resources for better productivity and sustainability. The resources can be human, software and hardware equipment and their effective management can enhance operational efficiency through better and informed decision making. This review article examines the application of geospatial technologies, including GPS, GIS, and remote sensing, for optimizing resource utilization in livestock management. It compares these technologies to traditional livestock management practices and highlights their potential to improve animal tracking, feed intake monitoring, disease monitoring, pasture selection, and rangeland management. Previously, animal management practices were labor-intensive, time-consuming, and required more precision for optimal animal health and productivity. Digital technologies, including Artificial Intelligence (AI) and Machine Learning (ML) have transformed the livestock sector through precision livestock management. However, major challenges such as high cost, availability and accessibility to these technologies have deterred their implementation. To fully realize the benefits and tremendous contribution of these digital technologies and to address the challenges associated with their widespread adoption, the review proposes a collaborative approach between different stakeholders in the livestock sector including livestock farmers, researchers, veterinarians, industry professionals, technology developers, the private sector, financial institutions and government to share knowledge and expertise. The collaboration would facilitate the integration of various strategies to ensure the effective and wide adoption of digital technologies in livestock management by supporting the development of user-friendly and accessible tools tailored to specific livestock management and production systems.
文摘The optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum was investigated using response surface methodology (RSM). The three parameters namely temperature of 33℃, agitation of 150 r/min, and pH of 5 were chosen as center point from the previous study of fungal treatment. The experimental data on chemical oxygen demand (COD) removal (%) were fitted into a quadratic polynomial model using multiple regression analysis. The optimum process conditions were determined by analyzing response surface three-dimensional surface plot and contour plot and by solving the regression model equation with Design Expert software. Box-Behnken design technique under RSM was used to optimize their interactions, which showed that an incubation temperature of 32.5℃, agitation of 105 r/min, and pH of 5.5 were the best conditions. Under these conditions, the maximum predicted yield of COD removal was 98.43%. These optimum conditions were used to evaluate the trail experiment, and the maximum yield of COD removal was recorded as 98.5%.