This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir o...This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.展开更多
Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenan...Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenance of payment for hydrologic ecosystem services (Water-PES) is expanding in Brazil, there are difficulties in the implementation of projects. Due to the complexity and non-linearity of the hydrological processes, also affecting both EbA and Water-PES goals, monitoring quali-quantitative aspects of streams have been here addressed as a useful management tool. This study presents the Hydrological Monitoring Plan (HMP) of the Water Producer/PCJ project, operating between 2009-2014, in order to: 1) evaluate the impact of project actions under water quali-quantitative aspects;and 2) promote the incorporation of HMP’s elements in water resources management. HMP of the Water Producer/PCJ project has been implemented following the conditions for efficiency (baseline, long-term scale compatible with the actions of the project, in the experimental and reference watersheds). In addition, HMP is being implemented from upstream to downstream in catchments with areas ranging from 17 to 130 km<sup>2</sup>. This proposal favors the quantification and valuation of hydrologic services that could be assessed by ecohydrologic monitoring and modeling. Thus, we look forward to the consolidation of the Brazilian information system of water resources, the reduction of modeling uncertainties and integrated assessment of the consequences of land-use/land-cover change that strongly impact goals of EbA and Water-PES initiatives.展开更多
文摘This paper describes the effect of the composition of the oxide films on the properties of electrodes Ti/M<sub>x</sub>Ti<sub>y</sub>Sn<sub>z</sub>O<sub>2</sub> (M = Ir or Ru) prepared by the polymeric precursor method. XRD studies showed that the anodes are formed by solid solutions. The electrodes containing IrO<sub>2</sub> exhibit lower activity for the oxygen evolution reaction. The doping of the electrode surface with SnO<sub>2</sub> improves the catalytic properties of the anodes. However, it should be held in appropriate compositions, because the change in the atomic ratio of this element shows a marked effect on the stability of the oxides. Electrode Ti/Ir<sub>0.2</sub>Ti<sub>0.3</sub>Sn<sub>0.5</sub>O<sub>2</sub> has lower lifetime, i.e. 6 hours. The 20% decrease in the stoichiometric amount of SnO<sub>2</sub> increases the time to a value above 70 hours, as observed for Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub>. Electrode Ti/Ru<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> shows lifetime of 11 hours;therefore IrO<sub>2</sub> is more stable than RuO<sub>2</sub> under the conditions investigated. These results suggest that electrode Ti/Ir<sub>0.3</sub>Ti<sub>0.4</sub>Sn<sub>0.3</sub>O<sub>2</sub> is promising for different applications, such as water electrolysis, capacitors and organic electrosynthesis.
文摘Both Ecosystem-based Adaptation (EbA) and Payment for Ecosystem Services (PES) have a wide range of strategies that include different economic instruments for nature conservation. Although the generation and maintenance of payment for hydrologic ecosystem services (Water-PES) is expanding in Brazil, there are difficulties in the implementation of projects. Due to the complexity and non-linearity of the hydrological processes, also affecting both EbA and Water-PES goals, monitoring quali-quantitative aspects of streams have been here addressed as a useful management tool. This study presents the Hydrological Monitoring Plan (HMP) of the Water Producer/PCJ project, operating between 2009-2014, in order to: 1) evaluate the impact of project actions under water quali-quantitative aspects;and 2) promote the incorporation of HMP’s elements in water resources management. HMP of the Water Producer/PCJ project has been implemented following the conditions for efficiency (baseline, long-term scale compatible with the actions of the project, in the experimental and reference watersheds). In addition, HMP is being implemented from upstream to downstream in catchments with areas ranging from 17 to 130 km<sup>2</sup>. This proposal favors the quantification and valuation of hydrologic services that could be assessed by ecohydrologic monitoring and modeling. Thus, we look forward to the consolidation of the Brazilian information system of water resources, the reduction of modeling uncertainties and integrated assessment of the consequences of land-use/land-cover change that strongly impact goals of EbA and Water-PES initiatives.