The rotationally symmetric flow of a micropolar fluid in the presence of an infinite rotating disk has been studied numerically. The equations of motion are reduced to a system of ordinary differential equations, whic...The rotationally symmetric flow of a micropolar fluid in the presence of an infinite rotating disk has been studied numerically. The equations of motion are reduced to a system of ordinary differential equations, which in turn are solved numerically using SOR method and Simpson’s (1/3) rule. The results are calculated for different values of the parameter s (the ratio of angular velocities of disc and fluid) and the suction parameter a. Moreover, three different sets of the values of non-dimensional material constants related to micropolar behavior of the fluid have been chosen arbitrarily. The calculations have been carried out using three different grid sizes to check the accuracy of the results. The research concludes that the micropolar fluids flow resembles with that of Newtonian fluids when the material constants become close to zero. The comparison of these results is presented for possible values of the parameter s.展开更多
文摘The rotationally symmetric flow of a micropolar fluid in the presence of an infinite rotating disk has been studied numerically. The equations of motion are reduced to a system of ordinary differential equations, which in turn are solved numerically using SOR method and Simpson’s (1/3) rule. The results are calculated for different values of the parameter s (the ratio of angular velocities of disc and fluid) and the suction parameter a. Moreover, three different sets of the values of non-dimensional material constants related to micropolar behavior of the fluid have been chosen arbitrarily. The calculations have been carried out using three different grid sizes to check the accuracy of the results. The research concludes that the micropolar fluids flow resembles with that of Newtonian fluids when the material constants become close to zero. The comparison of these results is presented for possible values of the parameter s.