期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A SELF-SIMILAR LOCAL NEURO-FUZZY MODEL FOR SHORT-TERM DEMAND FORECASTING 被引量:2
1
作者 HASSANI Hossein ABDOLLAHZADEH Majid +1 位作者 IRANMANESH Hossein MIRANIAN Arash 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第1期3-20,共18页
This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed ... This paper proposes a selfsimilar local neurofuzzy (SSLNF) model with mutual informati onbased input selection algorithm for the shortterm electricity demand forecasting. The proposed self similar model is composed of a number of local models, each being a local linear neurofuzzy (LLNF) model, and their associated validity functions and can be interpreted itself as an LLNF model. The proposed model is trained by a nested local liner model tree (NLOLIMOT) learning algorithm which partitions the input space into axisorthogonal subdomains and then fits an LLNF model and its associated validity function on each subdomain. Furthermore, the proposed approach allows different input spaces for rule premises (validity functions) and consequents (local models). This appealing property is employed to assign the candidate input variables (i.e., previous load and temperature) which influence shortterm electricity demand in linear and nonlinear ways to local models and validity functions, respectively. Numerical results from shortterm load forecasting in the New England in 2002 demonstrated the accuracy of the SSLNF model for the STLF applications. 展开更多
关键词 Mutual information self-similar local neuro-fuzzy model short-term load forecasting.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部