Background: Lung cancer has become the leading cause of death in many regions.Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes.The aim of this study was to investigate the chro...Background: Lung cancer has become the leading cause of death in many regions.Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes.The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM.Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations.In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR).Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19.Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations.CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33 and 17p 13.1-13.3.And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG).Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis.We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33, and 17p 13.1-13.3.Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM.展开更多
TRIM22, a tripartite-motif (TRIM) protein, is upregulated upon interferon alpha (IFNa) administration to hepatitis C virus (HCV)-infected patients. However, the physiological role of TRIM22 upregulation remains ...TRIM22, a tripartite-motif (TRIM) protein, is upregulated upon interferon alpha (IFNa) administration to hepatitis C virus (HCV)-infected patients. However, the physiological role of TRIM22 upregulation remains unclear. Here, we describe a potential antiviral function of TRI M22's targeting of the HCV NSSA protein. NS5A is important for HCV replication and for resistance to I FNa therapy. During the first 24 h following the initiation of I FNa treatment, upregulation of TRIM22 in the peripheral blood mononuclear cells (PBMCs) of HCV patients correlated with a decrease in viral titer. This phenomenon was confirmed in the hepatocyte-derived cell line Huh-7, which is highly permissive for HCV infection. TRIM22 over-expression inhibited HCV replication, and Small interfering RNA (siRNA)-mediated knockdown of TRIM22 diminished IFNα-induced anti-HCV function. Furthermore, we determined that TRIM22 ubiquitinates NS5A in a concentration-dependent manner. In summary, our results suggest that TRIM22 upregulation is associated with HCV decline during IFNα treatment and Dlavs an important role in controlling HCV replication in vitro.展开更多
文摘Background: Lung cancer has become the leading cause of death in many regions.Carcinogenesis is caused by the stepwise accumulation of genetic and chromosomal changes.The aim of this study was to investigate the chromosome and gene alterations in the human lung adenocarcinoma cell line OM.Methods: We used Giemsa banding and multiplex fluorescence in situ hybridization focusing on the human lung adenocarcinoma cell line OM to analyze its chromosome alterations.In addition, the gains and losses in the specific chromosome regions were identified by comparative genomic hybridization (CGH) and the amplifications of cancer-related genes were also detected by polymerase chain reaction (PCR).Results: We identified a large number of chromosomal numerical alterations on all chromosomes except chromosome X and 19.Chromosome 10 is the most frequently involved in translocations with six different interchromosomal translocations.CGH revealed the gains on chromosome regions of 3q25.3-28, 5p13, 12q22-23.24, and the losses on 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33 and 17p 13.1-13.3.And PCR showed the amplification of genes: Membrane metalloendopeptidase (MME), sucrase-isomaltase (SI), butyrylcholinesterase (BCHE), and kininogen (KNG).Conclusions: The lung adenocarcinoma cell line OM exhibited multiple complex karyotypes, and chromosome 10 was frequently involved in chromosomal translocation, which may play key roles in tumorigenesis.We speculated that the oncogenes may be located at 3q25.3-28, 5p13, 12q22-23.24, while tumor suppressor genes may exist in 3p25-26, 6p25, 6q26-27, 7q34-36, 8p22-23, 9p21-24, 10q25-26.3, 12p 13.31-13.33, and 17p 13.1-13.3.Moreover, at least four genes (MME, SI, BCHE, and KNG) may be involved in the human lung adenocarcinoma cell line OM.
文摘TRIM22, a tripartite-motif (TRIM) protein, is upregulated upon interferon alpha (IFNa) administration to hepatitis C virus (HCV)-infected patients. However, the physiological role of TRIM22 upregulation remains unclear. Here, we describe a potential antiviral function of TRI M22's targeting of the HCV NSSA protein. NS5A is important for HCV replication and for resistance to I FNa therapy. During the first 24 h following the initiation of I FNa treatment, upregulation of TRIM22 in the peripheral blood mononuclear cells (PBMCs) of HCV patients correlated with a decrease in viral titer. This phenomenon was confirmed in the hepatocyte-derived cell line Huh-7, which is highly permissive for HCV infection. TRIM22 over-expression inhibited HCV replication, and Small interfering RNA (siRNA)-mediated knockdown of TRIM22 diminished IFNα-induced anti-HCV function. Furthermore, we determined that TRIM22 ubiquitinates NS5A in a concentration-dependent manner. In summary, our results suggest that TRIM22 upregulation is associated with HCV decline during IFNα treatment and Dlavs an important role in controlling HCV replication in vitro.