期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Slug Flow Characteristics in Inclined and Vertical Channels
1
作者 Zhihui Wang Wei Luo +3 位作者 Ruiquan Liao Xiangwei Xie Fuwei Han Hongying Wang 《Fluid Dynamics & Materials Processing》 EI 2019年第5期583-595,共13页
Horizontal well production technology gradually occupies a dominant position in the petroleum field.With the rise in water production in the later stage of exploitation,slug flow phenomena will exist in horizontal,inc... Horizontal well production technology gradually occupies a dominant position in the petroleum field.With the rise in water production in the later stage of exploitation,slug flow phenomena will exist in horizontal,inclined and even vertical sections of gas wells.To grasp the flow law of slug flow and guide engineering practice,the flow law of slug flow at various inclination angles(30°~90°)is studied by means of the combination of laboratory experiments(including high frequency pressure data acquisition system)and finite element numerical simulation.The results reveal that because of the delay of pressure variation at the corresponding position of pipeline resulting from gas expansion,the highest point of pressure change curve corresponds not to the highest point of liquid holdup curve(pressure change lags behind 0.125 s of liquid holdup change).Thus,the delay of pressure should be highlighted in predicting slug flow using pressure parameter change;otherwise the accuracy of prediction will be affected when slug flow occurs.It is generally known that liquid holdup and pressure drop are the major factors affecting the pressure variation and stable operation of pipelines.Accordingly,the results of finite element numerical simulation and Beggs-Brill model calculation are compared with those of laboratory experiments.The numerical simulation method is applicable to predicting the pressure drop of the pipeline,while the Beggs-Brill model is more suitable for predicting the liquid holdup variation of the pipeline.The research conclusion helps reveal the slug flow law,and it is of a scientific guiding implication to the prediction method of flow parameters under slug flow pattern in the process of gas well exploitation. 展开更多
关键词 Slug flow volume liquid holdup PRESSURE pressure drop flow pattern numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部