期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
WELL-POSEDNESS AND STABILITY FOR THE GENERALIZED INCOMPRESSIBLE MAGNETO-HYDRODYNAMIC EQUATIONS IN CRITICAL FOURIER-BESOV-MORREY SPACES
1
作者 Azzeddine EL BARAKA Mohamed TOUMLILIN 《Acta Mathematica Scientia》 SCIE CSCD 2019年第6期1551-1567,共17页
This paper concerns the Cauchy problem of the 3D generalized incompressible magneto-hydrodynamic(GMHD) equations. By using the Fourier localization argument and the Littlewood-Paley theory, we get local well-posedness... This paper concerns the Cauchy problem of the 3D generalized incompressible magneto-hydrodynamic(GMHD) equations. By using the Fourier localization argument and the Littlewood-Paley theory, we get local well-posedness results of the GMHD equations with large initial data(u0, b0) belonging to the critical Fourier-Besov-Morrey spaces FN^1-2α+3/p'+λ/pp,λ,q(R^3) Moreover, stability of global solutions is also discussed. 展开更多
关键词 magneto-hydrodynamic Fourier-Besov-Morrey space STABILITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部