The aim of this work was to develop an active biopolymer based on chitosan by incorporating natural antioxidants.Five essential oils(ginger,rosemary,sage,tea tree and thyme)and six hydro-alcoholic extracts(from ginger...The aim of this work was to develop an active biopolymer based on chitosan by incorporating natural antioxidants.Five essential oils(ginger,rosemary,sage,tea tree and thyme)and six hydro-alcoholic extracts(from ginger,green and black tea,kenaf leaves,rosemary and sage plants)were tested.Migration assays were carried out to evaluate the films’activity,and total phenolic content and antioxidant activity were monitored in the simulant during storage.Interaction between natural compounds and polymeric matrix was evaluated by FTIR spectroscopy.The diffusion of the phenolic compounds was not detected in the films incorporated with hydro-alcoholic extracts(HAEs),indicating their entrapment in the chitosan.Migration was observed in the films with essential oils(EOs),and biobased films incorporated with ginger,sage or rosemary essential oils,presented the highest diffusion and antioxidant activity in the simulant,highlighting their functionality and potential to be used as food active packaging material.展开更多
The Internet-of-Things (IoT) is today one of the hypes in the technological world but despite the enormous attention and research investment, the clear business value is still hard to perceive. IoT deployments are cos...The Internet-of-Things (IoT) is today one of the hypes in the technological world but despite the enormous attention and research investment, the clear business value is still hard to perceive. IoT deployments are costly to be installed, managed and maintained, and need to provide a very clear value to justify the investments. For another viewpoint, IoT technologies need to be proven before deployment, which implies the need to test and assess IoT solutions in real settings and involve the actual target users. And as such, this presents an opportunity to have IoT deployments with a clear business model mainly focused on real-life large-scale research and technological experimentation. This would mean having a sustainable IoT infrastructure in-place based on the provision of experimentation services and a trial environment to industry and research, which then could also present an opportunity to establish added-value (business) services. This is the exact idea of the flagship SmartSantander testbed facility and especially its major deployment in the city of Santander, Spain. The SmartSantander facility business model is built around experimentally-driven research and technology development thus attracting many experimenters from industry and European research projects. This model makes it possible to sustain an outstanding large-scale IoT deployment of around 12,000 sensors and on top of it the development of new the development of new services and applications especially targeting the needs of users (citizens, businesses, authorities) in smart-cities. This paper studies the business model of outstanding SmartSantander facility in order to provide a generic Business Model for IoT testbeds that can provide guidance and be adapted by owners (or owners to-be) wishing to exploit their IoT deployments as facilities supporting experimentation and trials of IoT solutions.展开更多
文摘The aim of this work was to develop an active biopolymer based on chitosan by incorporating natural antioxidants.Five essential oils(ginger,rosemary,sage,tea tree and thyme)and six hydro-alcoholic extracts(from ginger,green and black tea,kenaf leaves,rosemary and sage plants)were tested.Migration assays were carried out to evaluate the films’activity,and total phenolic content and antioxidant activity were monitored in the simulant during storage.Interaction between natural compounds and polymeric matrix was evaluated by FTIR spectroscopy.The diffusion of the phenolic compounds was not detected in the films incorporated with hydro-alcoholic extracts(HAEs),indicating their entrapment in the chitosan.Migration was observed in the films with essential oils(EOs),and biobased films incorporated with ginger,sage or rosemary essential oils,presented the highest diffusion and antioxidant activity in the simulant,highlighting their functionality and potential to be used as food active packaging material.
文摘The Internet-of-Things (IoT) is today one of the hypes in the technological world but despite the enormous attention and research investment, the clear business value is still hard to perceive. IoT deployments are costly to be installed, managed and maintained, and need to provide a very clear value to justify the investments. For another viewpoint, IoT technologies need to be proven before deployment, which implies the need to test and assess IoT solutions in real settings and involve the actual target users. And as such, this presents an opportunity to have IoT deployments with a clear business model mainly focused on real-life large-scale research and technological experimentation. This would mean having a sustainable IoT infrastructure in-place based on the provision of experimentation services and a trial environment to industry and research, which then could also present an opportunity to establish added-value (business) services. This is the exact idea of the flagship SmartSantander testbed facility and especially its major deployment in the city of Santander, Spain. The SmartSantander facility business model is built around experimentally-driven research and technology development thus attracting many experimenters from industry and European research projects. This model makes it possible to sustain an outstanding large-scale IoT deployment of around 12,000 sensors and on top of it the development of new the development of new services and applications especially targeting the needs of users (citizens, businesses, authorities) in smart-cities. This paper studies the business model of outstanding SmartSantander facility in order to provide a generic Business Model for IoT testbeds that can provide guidance and be adapted by owners (or owners to-be) wishing to exploit their IoT deployments as facilities supporting experimentation and trials of IoT solutions.