Despite investigative efforts seen in the literature, the maximum power point </span><span style="font-family:Verdana;">tracking remains again a crucial problem in photovoltaic system (PV</spa...Despite investigative efforts seen in the literature, the maximum power point </span><span style="font-family:Verdana;">tracking remains again a crucial problem in photovoltaic system (PV</span><span style="font-family:Verdana;">) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real-time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.展开更多
文摘Despite investigative efforts seen in the literature, the maximum power point </span><span style="font-family:Verdana;">tracking remains again a crucial problem in photovoltaic system (PV</span><span style="font-family:Verdana;">) connected to the power grid. In this paper, a new maximum power point tracking technique which is our contribution to the resolution of this problem is treated. We proposed a hybrid controller of maximum power point tracking based on artificial neural networks. This hybrid controller is composed of two neural networks. The first network has two inputs and two outputs: the inputs are solar irradiation and ambient temperature and the outputs are the reference output voltage and current corresponding at the maximum power point. The second network has two inputs and one output: the inputs use the outputs of the first network and the output will be the periodic cycle which controls the DC/DC converter. The training step of neural networks requires two modes: the offline mode and the online mode. The data necessary for the training are collected from a very large number of real-time measurements of the PV module. The performance of the proposed method is analyzed under different operating conditions using the Matlab/Simulink simulation tool. A comparative study between the proposed method and the perturbation and observation approach was presented.