期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Decomposition of Al_(13) promoted by salicylic acid under acidic condition: Mechanism study by differential mass spectrometry method and DFT calculation
1
作者 Guangyu An Ye Yue +4 位作者 Lian Yang Hailu Demissie Ruyuan Jiao Jinyang Xi Dongsheng Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第4期423-433,共11页
Decomposition of the polycation Al_(13)O_(4)(OH)_(2)4(H_(2)O)_(12)^(7+)(Al_(13)) promoted by ligand is a vital subject to advance our understanding of natural and artificial occurrence and evolution of aluminum ions,e... Decomposition of the polycation Al_(13)O_(4)(OH)_(2)4(H_(2)O)_(12)^(7+)(Al_(13)) promoted by ligand is a vital subject to advance our understanding of natural and artificial occurrence and evolution of aluminum ions,especially in the case of acidic condition that dissolved Al^(3+)species can be released from the Al-bearing substances.However,the microscopic pathway of synchronous proton-promoted and ligand-promoted decomposition process for Al_(13)is still in the status of ambiguity.Herein,we applied differential mass spectrometry method and DFT calculation to study the initial detailed process of Al_(13)decomposition under the presence of proton and salicylic acid (H_(2)Sal).Mass results showed that the mononuclear Al^(3+)-H_(2)Sal complexes dominated the resulting Al species,whereas the monodentate complex Al_(13)HSal6+was not observed in the spectra.The difference of decomposition levels between the ligand/Al ratio 0.2 and 0.5 cases revealed that proton and ligand performed synergistic effect in initial Al_(13)decomposition process,and the proton transfer determined the ring closure efficiency.The ring closure reaction is the prerequisite for the collapse of Al_(13)structure and detachment of the mononuclear complex.DFT calculations reveal that hydrogen bond plays an important role in inducing the formation of chelated complex accompanying proton transfer.Attachment of protons at the bridging OH^(-)can elongate and weaken the critical bond between targeted Al^(3+)and μ4-O_(2)-resulting from delocalization of electron pairs in the oxygen atom.These results demonstrate the detailed mechanism of Al_(13)composition promoted by ligand and proton,and provide significant understanding for further application and control of Al_(13). 展开更多
关键词 Al_(13) Differential mass spectrometry Density functional calculation COMPLEX Ring closure DECOMPOSITION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部