Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection ...Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.展开更多
The sensor system is one of the modern and important methods of irrigation management in arid and semi-arid areas, which is water as the limiting factor for crop production. The study was applied for 2016 and 2017 sea...The sensor system is one of the modern and important methods of irrigation management in arid and semi-arid areas, which is water as the limiting factor for crop production. The study was applied for 2016 and 2017 seasons out in Al-Yousifya, 15 km Southwest of Baghdad. A study was conducted to evaluate coefficient uniformity, uniformity distribution and application efficiency for furrow, surface drip and subsurface drip irrigation methods and it was (98, 97 and 89)% and (97, 96 and 88)% for 2016 and 2017 seasons;respectively. And control the volumetric moisture content according to the rhizosphere depth for depths of 10, 20 and 30 cm by means of the sensor system. The results indicated that the height consumptive water use of furrow 707.91 and 689.69 mm<span style="white-space:nowrap;">·</span>season<sup>-1</sup> and the lowest for subsurface drip with emitter deep at 20 cm 313.93 and 293.50 mm<span style="white-space:nowrap;">·</span>season<sup>-1</sup> for 2016 and 2017 seasons;respectively. As well, the highest value of water use efficiency for subsurface in drip irrigation at a depth of 20 cm, was 2.71 and 2.99 kg<span style="white-space:nowrap;">·</span>m<sup>-3</sup> and the lowest value for furrow irrigation was 1.12 and 1.20 kg<span style="white-space:nowrap;">·</span>m<sup>-3</sup> for the 2016 and 2017 seasons;respectively.展开更多
<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font...<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2017 and 2017</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">2018 growing seasons.</span><span style="color:red;"> </span><span style="font-family:Verdana;">This study was conducted using two irrigation methods, sprinkler and surface irrigation, for each of them had three Tillage methods (zero-tillage</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> medium-tillage</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> deep-tillage) and each tillage system had four seeding rate of wheat yield (120</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">180</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">240</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">300) kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Results indicated that the consumptive water use was 557.5 and</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">535.9 mm for surface irrigation and 460.9 and 442.6 mm for sprinkler irrigation in </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">2016-2017 and 2017-2018 growing seasons. Sprinkler irrigation significantly increased the flag leaf area with no significant effect on plant height. However, the minimum tillage and seeding rate (240 kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) significantly increased the plant height and flag leaf </span><span style="font-family:Verdana;">area in both growing seasons. For the grain yield, the sprinkler irrigation, m</span><span style="font-family:Verdana;">inimum tillage, and seeding rate (240 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) also increased the plant height and flag leaf area by 13%, 10, % 11%, 11%, 12%, and 14% in both growing seasons, respectively, through an increased number of spikes/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, the number of grain spike-1, and 1000-grain weight in both growing seasons, respe</span></span><span style="font-family:Verdana;">ctively. Interestingly the grain yield was increased by 33% and 32% in both growing seasons under the effects of these three factors altogether, respectively. It can be concluded that these factors act synergistically, resulting in a significant improvement in the wheat grain-yield of, less consumptive water use, and high water use efficiency.</span>展开更多
As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring s...As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+).展开更多
Soybean [Glycine max (L.) Merr.] growth rate and grain yield are modified by the interception and solar radiation use efficiency. Thus, it is desirable that the most of plant photosynthetic structures intercepting sol...Soybean [Glycine max (L.) Merr.] growth rate and grain yield are modified by the interception and solar radiation use efficiency. Thus, it is desirable that the most of plant photosynthetic structures intercepting solar radiation in order to have increment in carbon fixation and reflection on growth and yield. The goal of this study was to assess if soybean cultivars differ in grain yield in relation to solar radiation interception. Four soybean cultivars were evaluated at stages V6, V9, R2, R4, R6 and R8. To determine the photosynthetically active radiation interception by the canopy, the plants were divided into two parts (upper and lower strata). For grain yield components, the plants were divided into three parts (upper, middle and lower thirds). Of the photosynthetically active radiation intercepted by the vegetative canopy at the reproductive stages, the maximum observed intercept was 5.2% in the lower stratum of the plants. The number of infertile nodes increased in the lower third of plants due to low interception of solar radiation in this plant region. Thus, the soybean cultivars more efficient in intercepting photosynthetically active radiation inside the vegetative canopy showed higher grain yields.展开更多
The feline leukemia virus (FeLV) is a complex disease that affects mainly the immune and hematological systems of cats. And because the thymus was closely associated with the immune system, the aim of this study was t...The feline leukemia virus (FeLV) is a complex disease that affects mainly the immune and hematological systems of cats. And because the thymus was closely associated with the immune system, the aim of this study was to quantify the morphological changes in the thymus of naturally infected and uninfected animals. Thymus morphological changes were evaluated by quantifying the following parameters: thymocytes, fat tissue, thymic corpuscles, connective tissue, and type I and III collagen. This study analyzed a total of seven cats, five in the negative group (Fn) and two in the positive (Fp) group. The areas occupied by thymocytes in FeLV negative (Fn) and positive (Fp) animals were, respectively, 55.16% ± 6.15% and 44.81% ± 6.15% (p = 0.39);adipocytes, 42.14% ± 5.97% (Fn) and 53.42% ± 11.3% (Fp) (p = 0.34);blood vessels, 0.85% ± 0.24% (Fn) and 1.75% ± 0.52% (Fp) (p = 0.15). Whereas thymic corpuscles occupied an area of 0.68% ± 0.19% in negative animals (Fn) only. The connective tissue covered area varied between 12.05% ± 0.68% (Fn) and 10.34% ± 0.62% (Fp) (p = 0.009). Collagen type I (p = 0.30) and type III (p = 0.59) were present in, respectively, 1.73% ± 0.3% and 0.44% ± 0.09% in Fn, and 1.44% ± 0.36 and 0.44% ± 0.13% in Fp. The FeLV virus was not able to completely modify the thymus structure of infected animals, considering the areas occupied by thymocytes, adipose tissue, blood vessels and also type I and III collagens. However, the connective tissue underwent a certain degree of remodeling since less connective tissue area was observed in FeLV infected animals. The absence of thymic corpuscles in immunosuppressed animals suggests a possible connection to thymopoiesis.展开更多
Integration system is used to denote practices that combine systematic use of the land and technologies,in which forest species are used in conjunction with herbaceous plants and/or animals respecting a spatial or tem...Integration system is used to denote practices that combine systematic use of the land and technologies,in which forest species are used in conjunction with herbaceous plants and/or animals respecting a spatial or temporal arrangement.Knowing that this type of production seeks to balance ecological and economic factors,it is important to understand the financial benefits and risks involved in this production.Financial analysis,therefore,acts as an important analysis tool to foster this type of activity.The paper aimed to conduct analysis of investment risk of a crop-livestock-forestry system deployed in Brazil,comparing two different production scenarios,scenario I with 17 ha and scenario II with 25 ha.The risk analysis was performed using the Monte Carlo method and sensitivity analysis(by varying the factors:the discount rate,productivity and price).A cash flow was elaborated based on annual cost and revenues data of the agricultural crops(corn and soybeans),livestock and eucalyptus,using an interest rate of 6%per year.The results indicated that the optimal age for cutting the eucalyptus was at seven years on both scenarios;scenario I had better return on investment using deterministic and probabilistic methods;scenario I presents higher investments risks;there is a negative relation between discount rate and annualized net present value(ANPV);increased productivity of crops provides greater profitability to the system;there has been an increase in the economic viability of the system,as value has been added to the products.Monte Carlo method and the sensitivity analysis showed to be an appropriate tool to analyze the risk of crop-livestock-forestry systems,making it possible to foresee how the project will respond to possible scenarios.展开更多
<span style="font-family:Verdana;">Modeling of irrigation methods </span><span style="font-family:Verdana;">is</span><span style="font-family:""><spa...<span style="font-family:Verdana;">Modeling of irrigation methods </span><span style="font-family:Verdana;">is</span><span style="font-family:""><span style="font-family:Verdana;"> one of the most important techniques that contribute to the future of modern agriculture. This will conserve water as water scarcity is a major threat for agriculture. In this study, AquaCrop model was used to model different irrigation methods of maize in field trails in Al-Yousifya, 15 km Southwest of Baghdad. Field experiments were conducted for two seasons during 2016 and 2017 using five irrigation methods including furrow, surface drip and subsurface drip with three patterns of emitter depth (10, 20 and 30 cm) irrigation. AquaCrop simulations of biomass, grain yield, harvest index and water productivity were validated using different statistical parameters under the natural conditions obtained in the study area. For 2016 and 2017 seasons, results of R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> were 0.98 and 0.99, 0.99 and 0.99, 0.99 and 0.97, and 0.8 and 0.73 for biomass, grain yield, harvest index and water productivity, respectively. The study has conducted that simulation using AquaCrop is considered very efficient tool for modeling of different irrigation applications</span><span style="font-family:Verdana;"> for maize production under the existing conditions</span><span style="font-family:Verdana;"> in the central region of Iraq.展开更多
The manufacture of leather covers a wide productive chain and beyond contributes to the economic flow.The various stages of leather processing result in high volumes of solid waste.In Brazil,a daily generation of 375 ...The manufacture of leather covers a wide productive chain and beyond contributes to the economic flow.The various stages of leather processing result in high volumes of solid waste.In Brazil,a daily generation of 375 tons of solid waste is estimated,and landfills are still the most used route to its destination.In this review,emphasis will be given to researches that have sought alternatives for the use of solid waste from the tannery industry.Among the main applications of solid tannery wastes,the following stand out production of adsorbent materials,biodiesel,biogas,biopolymers,applications in agriculture and other applications involving extraction/recovery of compounds of industrial/commercial interest,isolation of microorganisms and production of enzymes and applications in the animal diet.In each alternative of waste application,the technologies used,the opportunities,and the challenges faced are mentioned.We hope that this review can provide valuable information to promote the broad understanding of the possibilities that tannery solid wastes has for the development of biodegradable and agricultural products,wastewater treatment,extraction of compounds of industrial and commercial interest,among others.展开更多
基金supported by Foundation for Research Support of the State of Bahia(FAPESB)the CAPES Foundation(Brazilian Ministry of Education+1 种基金Finance Code 001)for financial supportBahia Association of Cotton Producers。
文摘Background To control the boll weevil Anthonomus grandis grandis(Coleoptera:Curculionidae),a key pest of cotton in the Americas,insecticides have been intensively used to manage their populations,increasing selection pressure for resistant populations.Thus,this study aimed to detect insecticide resistance and assess insecticide control failure likelihood of boll weevil populations exposed to malathion,profenophos+cypermethrin,and fipronil insecticides.Results Twelve populations of the boll weevil were collected from commercial cotton fileds of the state of Bahia,northeastern Brazil.These populations were exposed to malathion,profenophos+cypermethrin mixture,and fipronil,at their respective maximum label dose for field applications.Three replicates of 10 adult beetles were exposed to the insecticides and mortality was recorded after 24 h treatment.The control failure likelihood was determined after 48 h.Highest median lethal times(LT_(50))were observed for malathion and the profenophos+cypermethrin mixture.Resistance to at least one insecticide was detected in 11 populations;three populations were resistant to malathion and profenophos+cypermethrin;seven were resistant to all insecticides tested.The resistance levels were low(<10-fold)for the three insecticides.Among 12 populations tested,58%of them exhibited significant risk of control failure for the insecticides malathion and profenophos+cypermethrin.The insecticide fipronil was efficient for the control of the boll weevil in 83%of the populations.Conclusions The results confirm the significant risk of insecticide control failure in the boll weevil populations to the main compounds used in the region.Thus,proper insecticide resistance management plans are necessary for the boll weevil in the region,particularly for malathion and profenophos+cypermethrin insecticides.
文摘The sensor system is one of the modern and important methods of irrigation management in arid and semi-arid areas, which is water as the limiting factor for crop production. The study was applied for 2016 and 2017 seasons out in Al-Yousifya, 15 km Southwest of Baghdad. A study was conducted to evaluate coefficient uniformity, uniformity distribution and application efficiency for furrow, surface drip and subsurface drip irrigation methods and it was (98, 97 and 89)% and (97, 96 and 88)% for 2016 and 2017 seasons;respectively. And control the volumetric moisture content according to the rhizosphere depth for depths of 10, 20 and 30 cm by means of the sensor system. The results indicated that the height consumptive water use of furrow 707.91 and 689.69 mm<span style="white-space:nowrap;">·</span>season<sup>-1</sup> and the lowest for subsurface drip with emitter deep at 20 cm 313.93 and 293.50 mm<span style="white-space:nowrap;">·</span>season<sup>-1</sup> for 2016 and 2017 seasons;respectively. As well, the highest value of water use efficiency for subsurface in drip irrigation at a depth of 20 cm, was 2.71 and 2.99 kg<span style="white-space:nowrap;">·</span>m<sup>-3</sup> and the lowest value for furrow irrigation was 1.12 and 1.20 kg<span style="white-space:nowrap;">·</span>m<sup>-3</sup> for the 2016 and 2017 seasons;respectively.
文摘<span style="font-family:Verdana;">A field trial was conducted at a private farm in AL-Hashimiya district Babylon Governorate—the republic of Iraq during the 2016</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">2017 and 2017</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">2018 growing seasons.</span><span style="color:red;"> </span><span style="font-family:Verdana;">This study was conducted using two irrigation methods, sprinkler and surface irrigation, for each of them had three Tillage methods (zero-tillage</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> medium-tillage</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> deep-tillage) and each tillage system had four seeding rate of wheat yield (120</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">180</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">240</span><span style="font-family:Verdana;">, </span><span style="font-family:Verdana;">300) kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Results indicated that the consumptive water use was 557.5 and</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">535.9 mm for surface irrigation and 460.9 and 442.6 mm for sprinkler irrigation in </span><span style="font-family:Verdana;">the </span><span style="font-family:;" "=""><span style="font-family:Verdana;">2016-2017 and 2017-2018 growing seasons. Sprinkler irrigation significantly increased the flag leaf area with no significant effect on plant height. However, the minimum tillage and seeding rate (240 kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) significantly increased the plant height and flag leaf </span><span style="font-family:Verdana;">area in both growing seasons. For the grain yield, the sprinkler irrigation, m</span><span style="font-family:Verdana;">inimum tillage, and seeding rate (240 </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">kg<span style="white-space:nowrap;">∙</span>ha</span><sup><span style="font-family:Verdana;">-1</span></sup></span><span style="font-family:;" "=""><span style="font-family:Verdana;">) also increased the plant height and flag leaf area by 13%, 10, % 11%, 11%, 12%, and 14% in both growing seasons, respectively, through an increased number of spikes/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, the number of grain spike-1, and 1000-grain weight in both growing seasons, respe</span></span><span style="font-family:Verdana;">ctively. Interestingly the grain yield was increased by 33% and 32% in both growing seasons under the effects of these three factors altogether, respectively. It can be concluded that these factors act synergistically, resulting in a significant improvement in the wheat grain-yield of, less consumptive water use, and high water use efficiency.</span>
文摘As climate change negotiations progress,monitoring biomass and carbon stocks is becoming an important part of the current forest research.Therefore,national governments are interested in developing forest-monitoring strategies using geospatial technology.Among statistical methods for mapping biomass,there is a nonparametric approach called k-nearest neighbor(kNN).We compared four variations of distance metrics of the kNN for the spatially-explicit estimation of aboveground biomass in a portion of the Mexican north border of the intertropical zone.Satellite derived,climatic,and topographic predictor variables were combined with the Mexican National Forest Inventory(NFI)data to accomplish the purpose.Performance of distance metrics applied into the kNN algorithm was evaluated using a cross validation leave-one-out technique.The results indicate that the Most Similar Neighbor(MSN)approach maximizes the correlation between predictor and response variables(r=0.9).Our results are in agreement with those reported in the literature.These findings confirm the predictive potential of the MSN approach for mapping forest variables at pixel level under the policy of Reducing Emission from Deforestation and Forest Degradation(REDD+).
文摘Soybean [Glycine max (L.) Merr.] growth rate and grain yield are modified by the interception and solar radiation use efficiency. Thus, it is desirable that the most of plant photosynthetic structures intercepting solar radiation in order to have increment in carbon fixation and reflection on growth and yield. The goal of this study was to assess if soybean cultivars differ in grain yield in relation to solar radiation interception. Four soybean cultivars were evaluated at stages V6, V9, R2, R4, R6 and R8. To determine the photosynthetically active radiation interception by the canopy, the plants were divided into two parts (upper and lower strata). For grain yield components, the plants were divided into three parts (upper, middle and lower thirds). Of the photosynthetically active radiation intercepted by the vegetative canopy at the reproductive stages, the maximum observed intercept was 5.2% in the lower stratum of the plants. The number of infertile nodes increased in the lower third of plants due to low interception of solar radiation in this plant region. Thus, the soybean cultivars more efficient in intercepting photosynthetically active radiation inside the vegetative canopy showed higher grain yields.
文摘The feline leukemia virus (FeLV) is a complex disease that affects mainly the immune and hematological systems of cats. And because the thymus was closely associated with the immune system, the aim of this study was to quantify the morphological changes in the thymus of naturally infected and uninfected animals. Thymus morphological changes were evaluated by quantifying the following parameters: thymocytes, fat tissue, thymic corpuscles, connective tissue, and type I and III collagen. This study analyzed a total of seven cats, five in the negative group (Fn) and two in the positive (Fp) group. The areas occupied by thymocytes in FeLV negative (Fn) and positive (Fp) animals were, respectively, 55.16% ± 6.15% and 44.81% ± 6.15% (p = 0.39);adipocytes, 42.14% ± 5.97% (Fn) and 53.42% ± 11.3% (Fp) (p = 0.34);blood vessels, 0.85% ± 0.24% (Fn) and 1.75% ± 0.52% (Fp) (p = 0.15). Whereas thymic corpuscles occupied an area of 0.68% ± 0.19% in negative animals (Fn) only. The connective tissue covered area varied between 12.05% ± 0.68% (Fn) and 10.34% ± 0.62% (Fp) (p = 0.009). Collagen type I (p = 0.30) and type III (p = 0.59) were present in, respectively, 1.73% ± 0.3% and 0.44% ± 0.09% in Fn, and 1.44% ± 0.36 and 0.44% ± 0.13% in Fp. The FeLV virus was not able to completely modify the thymus structure of infected animals, considering the areas occupied by thymocytes, adipose tissue, blood vessels and also type I and III collagens. However, the connective tissue underwent a certain degree of remodeling since less connective tissue area was observed in FeLV infected animals. The absence of thymic corpuscles in immunosuppressed animals suggests a possible connection to thymopoiesis.
文摘Integration system is used to denote practices that combine systematic use of the land and technologies,in which forest species are used in conjunction with herbaceous plants and/or animals respecting a spatial or temporal arrangement.Knowing that this type of production seeks to balance ecological and economic factors,it is important to understand the financial benefits and risks involved in this production.Financial analysis,therefore,acts as an important analysis tool to foster this type of activity.The paper aimed to conduct analysis of investment risk of a crop-livestock-forestry system deployed in Brazil,comparing two different production scenarios,scenario I with 17 ha and scenario II with 25 ha.The risk analysis was performed using the Monte Carlo method and sensitivity analysis(by varying the factors:the discount rate,productivity and price).A cash flow was elaborated based on annual cost and revenues data of the agricultural crops(corn and soybeans),livestock and eucalyptus,using an interest rate of 6%per year.The results indicated that the optimal age for cutting the eucalyptus was at seven years on both scenarios;scenario I had better return on investment using deterministic and probabilistic methods;scenario I presents higher investments risks;there is a negative relation between discount rate and annualized net present value(ANPV);increased productivity of crops provides greater profitability to the system;there has been an increase in the economic viability of the system,as value has been added to the products.Monte Carlo method and the sensitivity analysis showed to be an appropriate tool to analyze the risk of crop-livestock-forestry systems,making it possible to foresee how the project will respond to possible scenarios.
文摘<span style="font-family:Verdana;">Modeling of irrigation methods </span><span style="font-family:Verdana;">is</span><span style="font-family:""><span style="font-family:Verdana;"> one of the most important techniques that contribute to the future of modern agriculture. This will conserve water as water scarcity is a major threat for agriculture. In this study, AquaCrop model was used to model different irrigation methods of maize in field trails in Al-Yousifya, 15 km Southwest of Baghdad. Field experiments were conducted for two seasons during 2016 and 2017 using five irrigation methods including furrow, surface drip and subsurface drip with three patterns of emitter depth (10, 20 and 30 cm) irrigation. AquaCrop simulations of biomass, grain yield, harvest index and water productivity were validated using different statistical parameters under the natural conditions obtained in the study area. For 2016 and 2017 seasons, results of R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> were 0.98 and 0.99, 0.99 and 0.99, 0.99 and 0.97, and 0.8 and 0.73 for biomass, grain yield, harvest index and water productivity, respectively. The study has conducted that simulation using AquaCrop is considered very efficient tool for modeling of different irrigation applications</span><span style="font-family:Verdana;"> for maize production under the existing conditions</span><span style="font-family:Verdana;"> in the central region of Iraq.
文摘The manufacture of leather covers a wide productive chain and beyond contributes to the economic flow.The various stages of leather processing result in high volumes of solid waste.In Brazil,a daily generation of 375 tons of solid waste is estimated,and landfills are still the most used route to its destination.In this review,emphasis will be given to researches that have sought alternatives for the use of solid waste from the tannery industry.Among the main applications of solid tannery wastes,the following stand out production of adsorbent materials,biodiesel,biogas,biopolymers,applications in agriculture and other applications involving extraction/recovery of compounds of industrial/commercial interest,isolation of microorganisms and production of enzymes and applications in the animal diet.In each alternative of waste application,the technologies used,the opportunities,and the challenges faced are mentioned.We hope that this review can provide valuable information to promote the broad understanding of the possibilities that tannery solid wastes has for the development of biodegradable and agricultural products,wastewater treatment,extraction of compounds of industrial and commercial interest,among others.