Over-expression of the cytochrome P450 CYP6CM1 gene has been associated with imidacloprid resistance in a number of Q and B biotype Bemisia tabaci laboratory strains from distinct geographical origins worldwide. We re...Over-expression of the cytochrome P450 CYP6CM1 gene has been associated with imidacloprid resistance in a number of Q and B biotype Bemisia tabaci laboratory strains from distinct geographical origins worldwide. We recently demonstrated that the Q biotype version of the CYP6CM 1 protein (CYP6CMlvQ) is capable of metabolizing imida- cloprid. Here, we show that the levels of BtCYP6CMlvQ were also elevated in laboratory- resistant strains and field-derived populations, with variable imidacloprid resistance levels, collected in Crete. High levels of CYP6CMlvQ transcripts were also determined in survivors of a heterogeneous field population, after exposure to discriminating imidacloprid dosage. Using peptide antibody-based detection assays, we demonstrated that in line with transcriptional data, the CYP6CMlvQ protein levels were higher in imidacloprid-resistant insects, which further implicates the gene as the causal factor of resistance. Finally, assess- ment of the cross-metabolism potential of CYP6CMlvQ against additional neonicotinoid molecules used for B. tabaci control revealed that clothianidin and thiacloprid, but not acetamiprid or thiamethoxam, are metabolized by the recombinant enzyme in vitro.展开更多
Helicoverpa armigera has been controlled effectively with chemical insec- ticides in the major cotton crop production areas of northern Greece for many years. However, a resurgence of the pest was observed in 2010, wh...Helicoverpa armigera has been controlled effectively with chemical insec- ticides in the major cotton crop production areas of northern Greece for many years. However, a resurgence of the pest was observed in 2010, which significantly affected crop production. During a 4-year survey (2007-2010), we examined the insecticide re- sistance status of 1-1. armigera populations from two major and representative cotton production areas in northern Greece against seven insecticides (chlorpyrifos, diazinon, methomyl, alpha-cypermethrin, cypermethrin, gamma-cyhalothrin and endosulfan). Full dose-response bioassays on third instar larvae were performed by topical application. Lethal doses at 50% were estimated by probit analysis and resistance factors (RF) were calculated, compared to a susceptible laboratory reference stra^a. Resistance levels were relatively moderate until 2009, with resistance ratios below 10-fold for organophosphates and carbamates and up to 16-fold for the pyrethroid alpha-cypermethrin. However, resis- tance rose to 46- and 81-fold for chlorpyrifos and alpha-cypermethrin, respectively in 2010, when the resurgence of the pest was observed. None of the known pyrethroid resistance mutations were found in the pyrethroid-resistant insects. The possible association between resistance and H. armigera resurgence in Greece is discussed.展开更多
文摘Over-expression of the cytochrome P450 CYP6CM1 gene has been associated with imidacloprid resistance in a number of Q and B biotype Bemisia tabaci laboratory strains from distinct geographical origins worldwide. We recently demonstrated that the Q biotype version of the CYP6CM 1 protein (CYP6CMlvQ) is capable of metabolizing imida- cloprid. Here, we show that the levels of BtCYP6CMlvQ were also elevated in laboratory- resistant strains and field-derived populations, with variable imidacloprid resistance levels, collected in Crete. High levels of CYP6CMlvQ transcripts were also determined in survivors of a heterogeneous field population, after exposure to discriminating imidacloprid dosage. Using peptide antibody-based detection assays, we demonstrated that in line with transcriptional data, the CYP6CMlvQ protein levels were higher in imidacloprid-resistant insects, which further implicates the gene as the causal factor of resistance. Finally, assess- ment of the cross-metabolism potential of CYP6CMlvQ against additional neonicotinoid molecules used for B. tabaci control revealed that clothianidin and thiacloprid, but not acetamiprid or thiamethoxam, are metabolized by the recombinant enzyme in vitro.
文摘Helicoverpa armigera has been controlled effectively with chemical insec- ticides in the major cotton crop production areas of northern Greece for many years. However, a resurgence of the pest was observed in 2010, which significantly affected crop production. During a 4-year survey (2007-2010), we examined the insecticide re- sistance status of 1-1. armigera populations from two major and representative cotton production areas in northern Greece against seven insecticides (chlorpyrifos, diazinon, methomyl, alpha-cypermethrin, cypermethrin, gamma-cyhalothrin and endosulfan). Full dose-response bioassays on third instar larvae were performed by topical application. Lethal doses at 50% were estimated by probit analysis and resistance factors (RF) were calculated, compared to a susceptible laboratory reference stra^a. Resistance levels were relatively moderate until 2009, with resistance ratios below 10-fold for organophosphates and carbamates and up to 16-fold for the pyrethroid alpha-cypermethrin. However, resis- tance rose to 46- and 81-fold for chlorpyrifos and alpha-cypermethrin, respectively in 2010, when the resurgence of the pest was observed. None of the known pyrethroid resistance mutations were found in the pyrethroid-resistant insects. The possible association between resistance and H. armigera resurgence in Greece is discussed.